Momentum would be the same before and after the collision
Before the collision:
Momentum of the single cart: 1 * 0.50 = 0.50
After the collision
velocity = 0.25m / s
1 * 0.25 + 1 * 0.25 =
0.25 * (1 + 1) =
0.25 * 2 =
0.50
Now new momentum will be 0.5
answer
the same before and after the collision
Answer: 5.5m/s
Explanation:
vf=vi+at
vf= 4.0m/s + (0.50m/s^2)(3.0s)
Answer:
A) wood, water, neon gas
Explanation:
Matter, which constitutes every known substances is said to exists in three states namely: gaseous, solid and liquid. Each state of matter contain particles that make up their structure.
- Solids have well arranged particles that are tightly packed together to give it its solid shape. Example is wood
- Liquids have particles that are loosely packed together, hence, can still move about. Example is water
- Gases have particles that are not packed together, hence, their ability to roam freely. Example is neon gas
Based on this, the order of MOST to LEAST ordered particle arrangement is solid - liquid- gas i.e. wood - water - neon gas.
A steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.the speed of transverse waves on the wire would be 372.77 m/s
<h3>What is a sound wave?</h3>
It is a particular variety of mechanical waves made up of the disruption brought on by the movements of the energy. In an elastic medium like the air, a sound wave travels through compression and rarefaction.
For calculating the wave velocity of the sound waves generated from the piano can be calculated by the formula
V= √F/μ
where v is the wave velocity of the wave travel on the string
F is the tension in the string of piano
μ is the mass per unit length of the string
As given in question a steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.
The μ is the mass per unit length of the string would be
μ = 4.80/(1.150×1000)
μ = 0.0041739 kg/m
By substituting the respective values of the tension on the string and the density(mass per unit length) in the above formula of the wave velocity
V= √F/μ
V=√(580/0.0041739)
V = 372.77 m/s
Thus, the speed of transverse waves on the wire comes out to be 372.77 m/s
Learn more about sound waves from here
brainly.com/question/11797560
#SPJ1
<span>B. a ship slowly sinking</span>
This is not balanced