1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MArishka [77]
3 years ago
13

Desde el punto A sale un vehículo a 80 km/h al mismo tiempo sale un ciclista a 20km/h ¿a qué distancia se encuentra uno del otro

al cabo de 5h. R:300k
Physics
1 answer:
stiv31 [10]3 years ago
4 0

Answer:

Distance between them after 5 hours is 300 km.

Explanation:

From point A a vehicle leaves at 80 km / h at the same time a cyclist leaves at 20 km / h at what distance is they from each other after 5 hours.

Distance traveled by A in 5 hours = speed x time = 80 x 5 = 400 km

Distance traveled by B in 5 hours = speed x time = 20 x 5 = 100 km

The distance between them after 5 hours =  400 - 100 = 300 km

You might be interested in
The linear impulse delivered by the hit of a boxer is 202 N · s during the 0.244 s of contact. What is the magnitude of the aver
zlopas [31]

Answer: Magnitude of the average force exerted on the glove by the other boxer is 827.86 N (approximately 828 N).

Explanation: Impulse is defined as the force acting on an object for a short period or interval of time.

Mathematically it is given by the relation:

Impulse = Force \times Time

According to the numerical values given in the question, I = 202 Ns and T = 0.244 s

So, Force F = \frac{Impulse}{Time} = \frac{202}{0.244} = 827.86 N

Magnitude of the average force exerted on the glove by the other boxer is 827.86 N (approximately 828 N).

7 0
3 years ago
A student measured the specific heat of water to be 4.29 J/g.Co. The
leonid [27]

Answer:

2.63 %.

Explanation:

Given that,

The calculated value of the specific heat of water is 4.29 J/g.C

Original value of  specific heat of water is 4.18 J/g.C.

We need to find the student's percent error. The percentage error in any quantity is given by :

P=\dfrac{|\text{original value-calculated value}|}{\text{original value}}\times 100\\\\P=\dfrac{4.29-4.18}{4.18}\times 100\\\\P=2.63\%

So, the student's percent error is 2.63 %.

7 0
3 years ago
PLeaSe SoMeBodY HeLp
Lerok [7]
1). Oört Cloud
2). Kuiper Belt
3). asteroids
4). meteorite

Note: 
Your teacher doesn't need this information ! 
Your teacher needs for you to LEARN stuff.
You have the answers now, but until you memorize the information,
you haven't learned anything.
5 0
3 years ago
Semi-conductors are materials that
Svetach [21]
Good morning, Jesusperez7!

Semi-conductors are materials that have insulator and conductor properties. 

Thank you for choosing Brainly for your tutoring site, and I hope you enjoy your experience here!


6 0
3 years ago
THIS MARCIN
nekit [7.7K]

Answer:

The image is formed at a ‘distance of 16.66 cm’ away from the lens as a diminished image of height 3.332 cm. The image formed is a real image.

Solution:

The given quantities are

Height of the object h = 5 cm

Object distance u = -25 cm

Focal length f = 10 cm

The object distance is the distance between the object position and the lens position. In order to find the position, size and nature of the image formed, we need to find the ‘image distance’ and ‘image height’.

The image distance is the distance between the position of convex lens and the position where the image is formed.

We know that the ‘focal length’ of a convex lens can be found using the below formula

1f=1v−1u\frac{1}{f}=\frac{1}{v}-\frac{1}{u}

f

1

=

v

1

−

u

1

Here f is the focal length, v is the image distance which is known to us and u is the object distance.

The image height can be derived from the magnification equation, we know that

Magnification=h′h=vu\text {Magnification}=\frac{h^{\prime}}{h}=\frac{v}{u}Magnification=

h

h

′

=

u

v

Thus,

h′h=vu\frac{h^{\prime}}{h}=\frac{v}{u}

h

h

′

=

u

v

First consider the focal length equation to find the image distance and then we can find the image height from magnification relation. So,

1f=1v−1(−25)\frac{1}{f}=\frac{1}{v}-\frac{1}{(-25)}

f

1

=

v

1

−

(−25)

1

1v=1f+1(−25)=110−125\frac{1}{v}=\frac{1}{f}+\frac{1}{(-25)}=\frac{1}{10}-\frac{1}{25}

v

1

=

f

1

+

(−25)

1

=

10

1

−

25

1

1v=25−10250=15250\frac{1}{v}=\frac{25-10}{250}=\frac{15}{250}

v

1

=

250

25−10

=

250

15

v=25015=503=16.66 cmv=\frac{250}{15}=\frac{50}{3}=16.66\ \mathrm{cm}v=

15

250

=

3

50

=16.66 cm

Then using the magnification relation, we can get the image height as follows

h′5=−16.6625\frac{h^{\prime}}{5}=-\frac{16.66}{25}

5

h

′

=−

25

16.66

So, the image height will be

h′=−5×16.6625=−3.332 cmh^{\prime}=-5 \times \frac{16.66}{25}=-3.332\ \mathrm{cm}h

′

=−5×

25

16.66

=−3.332 cm

Thus the image is formed at a distance of 16.66 cm away from the lens as a diminished image of height 3.332 cm. The image formed is a ‘real image’.

5 0
2 years ago
Other questions:
  • How does earth's magnetic field behave through long periods of geologic time?
    9·2 answers
  • Which of these items would be a renewable resource?
    10·1 answer
  • What is the density of a 500 g rectangle block with the following dimensions: Length = 8.0 cm, Width = 6.0 cm,
    11·1 answer
  • A 3-liter container has a pressure of 4 atmospheres. The container is sent underground, with resulting compression into 2 L. App
    7·1 answer
  • Where can electromagnetic waves travel that mechanical waves do not
    12·1 answer
  • An object of mass 4 kg is initially at rest on a frictionless ice rink. It suddenly explodes into three pieces (I have no idea w
    12·1 answer
  • What are the cons of using a cup made of plastic?
    9·1 answer
  • Help plz anyone ?????
    6·1 answer
  • True or false? If an element can form covalent bonds then it will never be involved in ionic bonding.
    8·2 answers
  • 2. A jack exerts a vertical force of 4.5 X 103
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!