Answer:
T₂ = 317.87 K
Explanation:
Given data:
Initial pressure = 15 atm
Final pressure = 16 atm
Initial temperature = 298 K
Final temperature = ?
Solution:
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
15 atm / 298K = 16 atm/T₂
T₂ = 16atm × 298 K / 15 atm
T₂ = 4768 atm. K / 15 atm
T₂ = 317.87 K
For the first one it’s 69 just count the little lines from the side.
According to ideal gas equation, we know for 1 mole of gas: PV=RT
where P = pressure, T = temperature, R = gas constant, V= volume
If '1' and '2' indicates initial and final experimental conditions, we have

Given that: V1 = 100.0 kPa, T1 = 100.0 K, V1 = 2.0 m3, T2 = 400 K, P2 = 200.0 kPa
∴ on rearranging above eq., we get V2 =

∴ V2 = 4 m3
<span>To solve this problem, You need to look up a picture/diagram of the electromagnetic spectrum. This will have the wave regions listed as well</span> as frequencies and wavelength.
Wavelength is distance/length of one wave, which can be calculated using frequency (hz = s^-1) and the speed of light.
2.998 x 10^8 m/s ÷ 3 x 10^19 s^-1 = 9.99 x 10^-12 m
The Frequency given falls in between X-rays and Gamma rays. The wavelength however; is in the Gama ray region.
Answer:
I would say A
Explanation:
our ancestors are the people that lived long before us