Answer:
Ionic Bonding: The formation of an Ionic bond is the result of the transfer of one or more electrons from a metal onto a non-metal.
Covalent Bonding: Bonding between non-metals consists of two electrons shared between two atoms.
Explanation:
the molar mass is how many grams it takes to make a full mole. The number in carbon 12 tells us that it takes 12 g to makes a mole, so one half of that would be <u><em>option d, 0.5</em></u>.
Answer: So if you had 570 cm of ribbon, then 570%2F8.5=67.05 which means that about 67 students can do the experiment (round down to the nearest whole number).
Explanation: If you had 8.5 cm of ribbon, then only 8.5%2F8.5=1 student can do the experiment. If you had 17 cm of ribbon, then 17%2F8.5=2 students can do the experiment.
V(NaOH)=15 mL =0.015 L
C(NaOH)=0.1 mol/L
C(H₂SO₄)=0.05 mol/L
2NaOH + H₂SO₄ = Na₂SO₄ + 2H₂O
n(NaOH)=V(NaOH)C(NaOH)=2n(H₂SO₄)
n(H₂SO₄)=V(H₂SO₄)C(H₂SO₄)
V(NaOH)C(NaOH)=2V(H₂SO₄)C(H₂SO₄)
V(H₂SO₄)=V(NaOH)C(NaOH)/{2C(H₂SO₄)}
V(H₂SO₄)=0.015*0.1/{2*0.05}=0.015 L = 15 mL
Answer:
- <em>The volume of 14.0 g of nitrogen gas at STP is </em><u><em>11.2 liter.</em></u>
Explanation:
STP stands for standard pressure and temperature.
The International Institute of of Pure and Applied Chemistry, IUPAC changed the definition of standard temperature and pressure (STP) in 1982:
- Before the change, STP was defined as a temperature of 273.15 K and an absolute pressure of exactly 1 atm (101.325 kPa).
- After the change, STP is defined as a temperature of 273.15 K and an absolute pressure of exactly 105 Pa (100 kPa, 1 bar).
Using the ideal gas equation of state, PV = nRT you can calculate the volume of one mole (n = 1) of gas. With the former definition, the volume of a mol of gas at STP, rounded to 3 significant figures, was 22.4 liter. This is classical well known result.
With the later definition, the volume of a mol of gas at STP is 22.7 liter.
I will use the traditional measure of 22.4 liter per mole of gas.
<u>1) Convert 14.0 g of nitrogen gas to number of moles:</u>
- n = mass in grams / molar mass
- Atomic mass of nitrogen: 14.0 g/mol
- Nitrogen gas is a diatomic molecule, so the molar mass of nitrogen gas = molar mass of N₂ = 14.0 × 2 g/mol = 28.0 g/mol
- n = 14.0 g / 28.0 g/mol = 0.500 mol
<u>2) Set a proportion to calculate the volume of nitrogen gas:</u>
- 22.4 liter / mol = x / 0.500 mol
- Solve for x: x = 0.500 mol × 22.4 liter / mol = 11.2 liter.
<u>Conclusion:</u> the volume of 14.0 g of nitrogen gas at STP is 11.2 liter.