1 in 10, or 1/10, or 0.1 dilution factor It may be wrong but this is what I have!
Answer: -
The hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
Explanation: -
Temperature of the hydrogen gas first sample = 10 °C.
Temperature in kelvin scale of the first sample = 10 + 273 = 283 K
For the second sample, the temperature is 350 K.
Thus we see the second sample of the hydrogen gas more temperature than the first sample.
We know from the kinetic theory of gases that
The kinetic energy of gas molecules increases with the increase in temperature of the gas. The speed of the movement of gas molecules also increase with the increase in kinetic energy.
So higher the temperature of a gas, more is the kinetic energy and more is the movement speed of the gas molecules.
Thus the hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
Answer:
28.16 g/mol
Explanation:
From Graham's law;
Let the rate of diffusion of gas X be 1.25
Let the rate of diffusion of CO2 be 1
Molecular mass of gas X= M
Molecular mass of CO2 = 44g/mol
1.25/1=√44/M
(1.25/1)^2 = 44/M
1.5625 = 44/M
M= 44/1.5625
M= 28.16 g/mol
Answer:
B.) If sodium carbonate is added to vinegar, the reaction will absorb heat.
Explanation:
A.) is incorrect because this is not testable. Rather, it is just an opinion that cannot be proven correct or incorrect.
B.) is correct because this statement is testable. Tests need to be run to determine the accuracy of the statement.
C.) is incorrect because this statement explains something that does not need to be tested. It is an example of a physical change when one tears a piece of paper.
D.) is incorrect because this is already a true statement. It is obvious that not all reactions absorb/release heat. While tests could be run to further prove this statement true, it is already considered accurate.
Answer:
The answer is option B, that is, it has two oxygen atoms.