Answer:
a) V(t) = Ldi(t)/dt
b) If current is constant, V = 0
Explanation:
a) The voltage, V(t), across an inductor is proportional to the rate of change of the current flowing across it with time.
If V represents the Voltage across the inductor
and i(t) represents the current across the inductor in time, t.
V(t) ∝ di(t)/dt
Introducing a proportionality constant,L, which is the inductance of the inductor
The general equation describing the voltage across the inductor of inductance, L, as a function of time when a current flows through it is shown below.
V(t) = Ldi(t)/dt ..................................................(1)
b) If the current flowing through the inductor is constant i.e. does not vary with time
di(t)/dt = 0 and hence the general equation (1) above becomes
V(t) = 0
Given acceleration a = 5-3t, and its velocity is 7 at time t = 2, the value of s2 - s1 = 7
<h3>How to solve for the value of s2 - s1</h3>
We have
= 


v2 = 5x2 - 3x2 + c
= 10-6+c
= 4+c

S2 - S1

= 6 + 6+c - 2+3+c
12+c-5+c = 0
7 = c
Read more on acceleration here: brainly.com/question/605631
Answer:
La probabilidad pedida es 
Explanation:
Sabemos que la probabilidad de que un nuevo producto tenga éxito es de 0.85. Sabemos también que se eligen 10 personas al azar y se les pregunta si comprarían el nuevo producto. Para responder a la pregunta, primero definiremos la siguiente variable aleatoria :
'' Número de personas que adquirirán el nuevo producto de 10 personas a las que se les preguntó ''
Ahora bien, si suponemos que la probabilidad de que el nuevo producto tenga éxito se mantiene constante
y además suponemos que hay independencia entre cada una de las personas al azar a las que se les preguntó ⇒ Podemos modelar a
como una variable aleatoria Binomial. Esto se escribe :
~
en donde
es el número de personas entrevistadas y
es la probabilidad de éxito (una persona adquiriendo el producto) en cada caso.
Utilizando los datos ⇒
~ 
La función de probabilidad de la variable aleatoria binomial es :
con 
Si reemplazamos los datos de la pregunta en la función de probabilidad obtenemos :
con 
Nos piden la probabilidad de que por lo menos 8 personas adquieran el nuevo producto, esto es :

Calculando
y
por separado y sumando, obtenemos que 