Answer:
✔️a healthy mind resides in a healthy body.
Explanation:
The seers were of the opinion that "a healthy mind resides in a healthy body."
Just like the English translation of a famous quotation from Thales, pre-Socratic Greek philosopher puts it "a sound mind in a sound body"; which tries to demonstrate the close connections that exists in bodily well-being and one's ability to enjoy life.
The seers were actually of the opinion that a healthy mind resides in a healthy body. It implies that there is connection between the body and the mind. When the body catches an illness, the mind and other parts of the body are affected. When our minds are not healthy, it affects the effective functioning of the body.
So, a healthy mind will definitely be found in a healthy body.
Answer:
maximum isolator stiffness k =1764 kN-m
Explanation:
mean speed of rotation
=65.44 rad/sec
= 0.1*(65.44)^2
F_T =428.36 N
Transmission ratio
also
transmission ratio
SOLVING FOR Wn
Wn = 42 rad/sec
k = m*W^2_n
k = 1000*42^2 = 1764 kN-m
k =1764 kN-m
Answer:
Assumption:
1. The kinetic and potential energy changes are negligible
2. The cylinder is well insulated and thus heat transfer is negligible.
3. The thermal energy stored in the cylinder itself is negligible.
4. The process is stated to be reversible
Analysis:
a. This is reversible adiabatic(i.e isentropic) process and thus
From the refrigerant table A11-A13
sat vapor
m=
b.) We take the content of the cylinder as the sysytem.
This is a closed system since no mass leaves or enters.
Hence, the energy balance for adiabatic closed system can be expressed as:
ΔE
ΔU
)
workdone during the isentropic process
=5.8491(246.82-219.9)
=5.8491(26.91)
=157.3993
=157.4kJ
Answer:
peak flow and any engineering considerations related thereto
Explanation:
It should be no surprise that a peak flow meter will report peak flow, sometimes with important maximum-value, time-constant, or bandwidth limitations. There are many engineering issues related to flow rates. A peak flow meter can allow you to assess those issues with respect to the flows actually encountered.
Peak flow can allow you to assess adequacy of flow and whether there may be blockages or impediments to flow that reduce peak levels below expected values. An appropriate peak flow meter can help you assess the length of time that peak flow can be maintained, and whether that delivers sufficient volume.
It can also allow you to assess whether appropriate accommodation is made for unexpectedly high flow rates. (Are buffers or overflow tanks of sufficient size? Is there adequate protection against possible erosion? Is there adequate support where flow changes direction?)