Answer:
The velocity of water at the bottom, 
Given:
Height of water in the tank, h = 12.8 m
Gauge pressure of water, 
Solution:
Now,
Atmospheric pressue, 
At the top, the absolute pressure, 
Now, the pressure at the bottom will be equal to the atmopheric pressure, 
The velocity at the top,
, l;et the bottom velocity, be
.
Now, by Bernoulli's eqn:

where

Density of sea water, 



Answer:
17.1
Explanation:
The distance ahead, of the deer when it is sighted by the park ranger, d = 20 m
The initial speed with which the ranger was driving, u = 11.4 m/s
The acceleration rate with which the ranger slows down, a = (-)3.80 m/s² (For a vehicle slowing down, the acceleration is negative)
The distance required for the ranger to come to rest, s = Required
The kinematic equation of motion that can be used to find the distance the ranger's vehicle travels before coming to rest (the distance 's'), is given as follows;
v² = u² + 2·a·s
∴ s = (v² - u²)/(2·a)
Where;
v = The final velocity = 0 m/s (the vehicle comes to rest (stops))
Plugging in the values for 'v', 'u', and 'a', gives;
s = (0² - 11.4²)/(2 × -3.8) = 17.1
The distance the required for the ranger's vehicle to com to rest, s = 17.1 (meters).
<h3>Option B</h3><h3>The time constant of a 10 H inductor and a 200 ohm resistor connected in series is 50 millisecond</h3>
<em><u>Solution:</u></em>
Given that,
10 H inductor and a 200 ohm resistor connected in series
To find: time constant
<em><u>The time constant in seconds is given as:</u></em>

Where,
L is the inductance in henry and R is the resistance in ohms

Convert to millisecond
1 second = 1000 millisecond
0.05 second = 0.05 x 1000 = 50 millisecond
Thus time constant is 50 millisecond
Answer:
The center of mass changes
Explanation:
The higher the center of mass the more likely things are to topple over but the lower it is the more likely to stay put when all 4 wheels are down .