Answer:
b) normal
Explanation:
The angle of refraction (transmission) Θt is the angle between the refracted ray and the normal N'. 2. When a light ray hits a surface normally, the angle between the incident ray and the normal is 0, so Θi = 0. Since the angle of reflection equals the angle of incidence, Θr= 0.
Answer:
Explanation:
magnetic filed, B = 0.65 T
initial diameter, d = 17.5 cm
final diameter, d' = 6.6 cm
time, t = 0.48 s
(a) According to Lenz's law, the direction of induced current is clockwise.
(b) Let e is the induced emf.
initial area, A = π r² = 3.14 x 0.0875 x 0.0875 = 0.024 m²
final area, A' = π r'² = 3.14 x 0.033 x 0.033 = 0.00342 m²
change in area, ΔA = A - A' = 0.024 - 0.00342 = 0.02058 m²
The magnitude of induced emf is given by


e = 0.65 x 0.02058 / 0.48
e = 0.028 V
(c) R = 2.5 ohm
i = e / R
i = 0.028 / 2.5
i = 0.011 A
Answer:
Radiation , Conduction and Convection
Explanation:
Those are the ways heat is transferred
Answer:
12N to the right.
Explanation:
There is a force of 12N upwards and a force of 12N downwards: these cancel out.
Assign a negative value to forces towards the left, and a positive value to the forces towards the right: -3N and +15N
Combine them: -3N+15N = 12N
The net force has a magnitude of 12N, and since our answer was positive, it acts towards the right.
Let's be clear: The plane's "395 km/hr" is speed relative to the
air, and the wind's "55 km/hr" is speed relative to the ground.
Before the wind hits, the plane moves east at 395 km/hr relative
to both the air AND the ground.
After the wind hits, the plane still maintains the same air-speed.
That is, its velocity relative to the air is still 395 km/hr east.
But the wind vector is added to the air-speed vector, and the
plane's velocity <span>relative to the ground drops to 340 km/hr east</span>.