I’m pretty sure it’s (B) tropical storm but I’m not sure
Answer:
We'll have 8.0 moles Fe3O4 and 4.0 moles CO2
Explanation:
Step 1: data given
Number of moles Fe2O3 = 12.0 moles
Number of moles CO = 12.0 moles
Step 2: The balanced equation
3Fe2O3 +CO → 2Fe3O4 + CO2
Step 3: Calculate the limiting reactant
For 3 moles Fe2O3 we need 1 mol CO to produce 2 moles Fe3O4 and 1 mol CO2
Fe2O3 is the limiting reactant. It will completely be consumed (12.0 moles).
CO is in excess. There will react 12.0 / 3 = 4.0 moles
There will remain 12.0 - 4.0 = 8.0 moles
Step 4: Calculate moles products
For 3 moles Fe2O3 we need 1 mol CO to produce 2 moles Fe3O4 and 1 mol CO2
For 12.0 moles Fe2O3 we'll have 2/3 * 12.0 = 8.0 moles Fe3O4
For 12.0 moles Fe2O3 we'll have 12.0 / 3 = 4.0 moles CO2
We'll have 8.0 moles Fe3O4 and 4.0 moles CO2
Answer:
1. Percentage by weight = 0.5023 = 50.23 %
2. molar fraction =0.153
Explanation:
We know that
Molar mass of HClO4 = 100.46 g/mol
So the mass of 5 Moles= 5 x 100.46
Mass (m)= 5 x 100.46 = 502.3 g
Lets assume that aqueous solution of HClO4 and the density of solution is equal to density of water.
Given that concentration HClO4 is 5 M it means that it have 5 moles of HClO4 in 1000 ml.
We know that
Mass = density x volume
Mass of 1000 ml solution = 1 x 1000 =1000 ( density = 1 gm/ml)
m'=1000 g
1.
Percentage by weight = 502.3 /1000
Percentage by weight = 0.5023 = 50.23 %
2.
We know that
molar mass of water = 18 g/mol
mass of water in 1000 ml = 1000 - 502.3 g=497.9 g
So moles of water = 497.7 /18 mole
moles of water = 27.65 moles
So molar fraction = 5/(5+27.65)
molar fraction =0.153
They need to replicate the experiment to see if the found data is relaible and consistent. #TeamAlvaxic
Answer:
Chlorine-35 and chlorine-37 are not different elements because an atom of chlorine-35 and an atom of chlorine-37 each contain the same number of protons. The number of protons an atom has, also known as the atom's atomic number, determines which element it is. All atoms which contain 17 protons are called chlorine atoms. Adding or removing a proton from an atom's nucleus changes that atom's atomic number and creates a different element.
Chlorine-35 and chlorine-37 are both isotopes of the element chlorine. The number after the name 'chlorine' is called the mass number. The mass number is a tally of the number of protons and the number of neutrons in an atom's nucleus. Since all atoms of chlorine contain 17 protons, chlorine-35 and chlorine-37 differ in the number of neutrons each one has. An atom of chlorine-35 contains 18 neutrons (17 protons + 18 neutrons = 35 particles in the nucleus) while an atom of chlorine-37 contains 20 neutrons (17 protons + 20 neutrons = 37 particles in the nucleus).
Adding or removing a neutron from an atom's nucleus creates isotopes of a particular element. Why does changing the number of protons in an atom change which element that atom is but changing the number of neutrons doesn't? Protons carry a positive charge. Each proton in an atom's nucleus must be balanced with a negatively charged electron in one of the 'shells' outside the nucleus. The number of electrons in an atom's outer shell determines the atom's chemical properties. Adding or removing protons changes the number and arrangement of electrons in the outer shell which changes how that atom reacts with other atoms. Neutrons don't change things greatly because they do not carry an electrical charge. Neutrons can be added or removed from an atom and the electrons around the atom really don't care that much.