Jacob Michael whitesides is an American singer-songwriter from Knoxville, Tennesse. He records music for Double U records, of which he is also CEO. He was born on November 11,1997
1 mol of any particles has 6.02 * 10 ²³ particles.
If we look at 1 NH3 (1 mol NH3 or 1 molecule NH3), we can see that 1 molecule NH3 has 1 atom of N and 3 atoms of H; also 1 mole of NH3 has 1 mole of N atoms and 3 moles of H atoms.
So, 1 mol of NH3 has 1 mol of N atoms,
and 2.79 mol NH3 have 2.79 mol of N atoms.
2.79 mol of N atoms* 6.02 * 10 ²³ N atoms/ 1 mol N atoms = 1.68*10²⁴ N-atoms
Answer is 1.68*10²⁴ N-atoms.
-30°C is more warmer than -30°F...!
<h2>How??</h2>
- Always Celsius is warmer than farheniet and also in coldness Celsius is colder than farheneit.
Explanation:
In order to be able to calculate the volume of oxygen gas produced by this reaction, you need to know the conditions for pressure and temperature.
Since no mention of those conditions was made, I'll assume that the reaction takes place at STP, Standard Temperature and Pressure.
STP conditions are defined as a pressure of
100 kPa
and a temperature of
0
∘
C
. Under these conditions for pressure and temperature, one mole of any ideal gas occupies
22.7 L
- this is known as the molar volume of a gas at STP.
So, in order to find the volume of oxygen gas at STP, you need to know how many moles of oxygen are produced by this reaction.
The balanced chemical equation for this decomposition reaction looks like this
2
KClO
3(s]
heat
×
−−−→
2
KCl
(s]
+
3
O
2(g]
↑
⏐
⏐
Notice that you have a
2
:
3
mole ratio between potassium chlorate and oxygen gas.
This tells you that the reaction will always produce
3
2
times more moles of oxygen gas than the number of moles of potassium chlorate that underwent decomposition.
Use potassium chlorate's molar mass to determine how many moles you have in that
231-g
sample
231
g
⋅
1 mole KClO
3
122.55
g
=
1.885 moles KClO
3
Use the aforementioned mole ratio to determine how many moles of oxygen would be produced from this many moles of potassium chlorate
1.885
moles KClO
3
⋅
3
moles O
2
2
moles KClO
3
=
2.8275 moles O
2
So, what volume would this many moles occupy at STP?
2.8275
moles
⋅
22.7 L
1
mol
=
64.2 L
Answer:
b, decrease in movement of the molecules
Explanation:
removing the energy will begin making the molecules lock up and stop moving due to the loss of energy.
hope this helped