1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zalisa [80]
3 years ago
15

Help me and get points..

Physics
1 answer:
Rufina [12.5K]3 years ago
4 0

Answer:

B) Depends on launch speed.

Explanation:

This is true when considering the basketball player in a given basketball game. The speed at which the player jumps up is a strong factor which determines the acceleration of his acceleration. The direct co-relation show that, speed and acceleration of the basketball player are interrelated.

You might be interested in
A disk has a radius of 30 cm and a mass of 0.3 kg and is turning at 3.0 rev/s. A trickle of sand falls onto the disk at a distan
Pani-rosa [81]

Answer:

The mass of the sand that will fall on the disk to decrease the is 0.3375 kg

Explanation:

Moment before = Moment after

I \omega_i = I \omega_f +mr^2 \omega_f\\\\mr^2 \omega_f = I \omega_i  - I \omega_f \\\\m = \frac{ I \omega_i  - I \omega_f}{r^2 \omega_f }

where;

I is moment of inertia = Mr² = 0.3 x (0.3)² = 0.027 kg.m²

substitute this in the above equation;

m = \frac{ 0.027[3(2 \pi)  - 2(2 \pi)]} {0.2^2 * 6\pi } = \frac{ 0.027[6 \pi  - 4\pi]} {0.2^2 * 4\pi }\\\\m = 0.3375kg

Therefore, the mass of the sand that will fall on the disk to decrease the is 0.3375 kg

7 0
3 years ago
Can you access an instance variable from a static method? explain why or why not.
marusya05 [52]
<span>The reason a static method can't access instance variable is because static references the class not a specific instance of the class so there is no instance variable to access.</span>
5 0
3 years ago
The emf induced in a coil that is rotating in a magnetic field will be at a maximum at which moment?
adelina 88 [10]
TLDR: It will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.

This is an example that requires you to investigate the properties that occur in electric generators; for example, hydroelectric dams produce electricity by forcing a coil to rotate in the presence of a magnetic field, generating a current.

To solve this, we need to understand the principles of electromotive forces and Lenz’ Law; changing the magnetic field conditions around anything with this potential causes an induced current in the wire that resists this change. This principle is known as Lenz’ Law, and can be described using equations that are specific to certain situations. For this, we need the two that are useful here:

e = -N•dI/dt; dI = ABcos(theta)

where “e” describes the electromotive force, “N” describes the number of loops in the coil, “dI” describes the change in magnetic flux, “dt” describes the change in time, “A” describes the area vector of the coil (this points perpendicular to the loops, intersecting it in open space), “B” describes the magnetic field vector, and theta describes the angle between the area and mag vectors.

Because the number of loops remains constant and the speed of the coils rotation isn’t up for us to decide, the only thing that can increase or decrease the emf is the change in magnetic flux, represented by ABcos(theta). The magnetic field and the size of the loop are also constant, so all we can control is the angle between the two. To generate the largest emf, we need cos(theta) to be as large as possible. To do this, we can search a graph of cos(theta) for the highest point. This occurs when theta equals 90 degrees, or a right angle. Therefore, the electromotive potential will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.

Hope this helps!
6 0
4 years ago
2 resistors of resistance 1000 ohm and 2000 ohm are joined in series with a 100V supply. A voltmeter of internal resistance 4000
Vadim26 [7]
<h2>The voltmeter reading will be 35.7 volt </h2>

Explanation:

The resistor 1000 ohm and 4000 ohm are connected in parallel .

Their combined resistance is supposed R₁

Thus \frac{1}{R_1} = \frac{1}{1000} + \frac{1}{4000}  

or R₁ = 800 ohm

Therefore the total resistance in circuit is = 2000 + 800 = 2800 ohm

Because these are in series .

We can find  current flowing through the circuit  I = \frac{V}{R} = \frac{100}{2800} = \frac{1}{28}

here R is total resistance .

The potential difference across 1000 ohm = \frac{1}{28} x 1000 = 35.7 volt

Thus voltmeter reading will be 35.7 volt

5 0
3 years ago
A circuit is made of a battery, a light bulb, and a 2 resistor. The battery has a voltage of 3 volts. When connected, the ammete
Monica [59]

Answer:

3ohms

Explanation:

From Ohm's Law

V = IR

V is that voltage = 3volts

I = current = 1amp

R = resistance in ohms

Putting those values into the above formula.

3volts = 1amp×R

Making R the subject

R = 3/1

R = 3ohms

The resistance of the light bulb is 3ohms.

6 0
4 years ago
Other questions:
  • A charge of 50 µC is pushed by a force of 25 µN a distance of 15 m in an electric field. What is the electric potential differen
    15·1 answer
  • A 24kg child descends a slide 5m high and reaches the bottom with a speed of 2.8m/s. How much thermal energy due to friction was
    14·1 answer
  • How does water flowing over a waterfall involve both kinetic energy and potential energy?
    6·2 answers
  • What is the philosopher’s stone
    15·1 answer
  • A block is initially at position x = 0 and in contact with an uncompressed spring of negligible mass. The block is pushed back a
    13·1 answer
  • A 0.71 W point source emits sound waves isotropically. Assuming that the energy of the waves is conserved, find the intensity (a
    9·1 answer
  • A common design for a spotlight uses a lens and a mirror, combined with a gas-discharge lamp, to project a powerful parallel bea
    9·1 answer
  • A 16 lb weight stretches a spring 6 inches in equilibrium. It is attached to a damping mechanism with constant c. Find all value
    9·1 answer
  • Is it possible to round a corner with a constant speed and a constant velocity
    9·1 answer
  • Since many wavelengths of light are measured in nanometers, it's useful to know that planck's constant (h) multiplied with the s
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!