1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
a_sh-v [17]
2 years ago
12

Friction occurs when microscopic hills and valleys stick together true or false

Physics
2 answers:
lara31 [8.8K]2 years ago
7 0

Explanation:

true but not going to copy and paste,

Reika [66]2 years ago
4 0

Answer:

true

Explanation:

Friction occurs because no surface is perfectly smooth. Rougher surfaces have more friction between them. Heavier objects also have more friction because they press together with greater force. Friction produces heat because it causes the molecules on rubbing surfaces to move faster and have more energy.

You might be interested in
In 2 1/2 hours an airplane travels 1150 km against the wind. It takes 50 min to travel 450 km with the wind. Find the speed of t
Tamiku [17]

Answer:

Velocity of airplane is 500 km/h

Velocity of wind is 40 km/h

Explanation:

V_a= Velocity of airplane in still air

V_w= Velocity of wind

Time taken by plane to travel 1150 km against the wind is 2.5 hours

V_a-V_w=\frac {1150}{2.5}\\\Rightarrow V_a-V_w=460\quad (1)

Time taken by plane to travel 450 km against the wind is 50 minutes = 50/60 hours

V_a+V_w=\frac {450}{50}\times 60\\\Rightarrow V_a-V_w=540\quad (2)

Subtracting the two equations we get

V_a-V_w-V_a-V_w=460-540\\\Rightarrow -2V_w=-80\\\Rightarrow V_w=40\ km/h

Applying the value of velocity of wind to the first equation

V_a-40=460\\\Rightarrow V_a =500\ km/h

∴ Velocity of airplane in still air is 500 km/h and Velocity of wind is 40 km/h

5 0
3 years ago
Whats the term for climate near equator
storchak [24]
The closer to the equator, the hotter the climate will be.
6 0
3 years ago
Read 2 more answers
Choose all facts that increase the orbital velocity of a vessel around planet B. Bigger mass of planet B smaller mass of planet
telo118 [61]

Answer:

- Bigger mass of planet B  

- orbiting closer to planet B

Explanation:

The orbital velocity of the vessel around the planet can be found by equalizing the force of gravity between the vessel and the planet and the centripetal force:

G\frac{mM}{r^2}=m\frac{v^2}{r}

where

G is the gravitational constant

m is the mass of the vessel

M is the mass of the planet

r is the distance between the vessel and the centre of the planet

v is the orbital velocity of the vessel

Re-arranging the formula, we find an expression for v:

v=\sqrt{\frac{GM}{r}}

We see that:

- the bigger the mass of the planet, M, the bigger the velocity

- the bigger the distance between the vessel and the planet, r, the smaller the velocity

So, the correct choices that increase the orbital velocity are:

- Bigger mass of planet B  

- orbiting closer to planet B

6 0
3 years ago
A diver leaves the end of a 4.0 m high diving board and strikes the water 1.3s later, 3.0m beyond the end of the board. Consider
shutvik [7]

Answer:

4.0 m/s

Explanation:

The motion of the diver is the motion of a projectile: so we need to find the horizontal and the vertical component of the initial velocity.

Let's consider the horizontal motion first. This motion occurs with constant speed, so the distance covered in a time t is

d=v_x t

where here we have

d = 3.0 m is the horizontal distance covered

vx is the horizontal velocity

t = 1.3 s is the duration of the fall

Solving for vx,

v_x = \frac{d}{t}=\frac{3.0 m}{1.3 s}=2.3 m/s

Now let's consider the vertical motion: this is an accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. The vertical position at time t is given by

y(t) = h + v_y t - \frac{1}{2}gt^2

where

h = 4.0 m is the initial height

vy is the initial vertical velocity

We know that at t = 1.3 s, the vertical position is zero: y = 0. Substituting these numbers, we can find vy

0=h+v_y t - \frac{1}{2}gt^2\\v_y = \frac{0.5gt^2-h}{t}=\frac{0.5(9.8 m/s^2)(1.3 s)^2-4.0 m}{1.3 s}=3.3 m/s

So now we can find the magnitude of the initial velocity:

v=\sqrt{v_x^2+v_y^2}=\sqrt{(2.3 m/s)^2+(3.3 m/s)^2}=4.0 m/s

4 0
3 years ago
A container is filled with an ideal diatomic gas to a pressure and volume of P1 and V1, respectively. The gas is then warmed in
lilavasa [31]

Answer:

Explanation:

The  change is as follows

P₁ V₁ to 3P₁, V₁ ( constt volume )  --- first process

3P₁,V₁ to 3P₁ , 5V₁ ( constt pressure ) ---- second process

In the first process Temperature must have been increased 3 times . So if initial temperature is T₁ then final temperature will be 3 T₁

P₁V₁ = n R T₁ , n is no of moles of gas enclosed.

nRT₁ = P₁V₁

Heat added at constant volume  = n Cv ( 3T₁ - T₁)

= n x 5/3 R X 2T₁ ( for diatomic gas Cv = 5/3 R)

= 10/3 x nRT₁

= 10/3x P₁V₁

In the second process,  Temperature must have been increased 5 times . So if initial temperature is 3T₁ then final temperature will be 15 T₁

Heat added at constant pressure in second case  

= n Cp ( 15T₁ - 3T₁)

= n x 7/3 R X 12T₁ ( For diatomic gas Cp = 7/3 R)

= 28 x nRT₁

= 28 P₁V₁

6 0
3 years ago
Other questions:
  • An engine moves a motorboat through water at a constant velocity of 22 meters/second. If the force exerted by the motor on the b
    5·1 answer
  • How can you safely experiment with plants during a scientific investigation?
    10·2 answers
  • 1. Which of the following is a direct cause of a substance’s temperature increase? (1 point). Energy is removed from the particl
    5·2 answers
  • At what point is the KINETIC ENERGY at its highest?
    11·1 answer
  • Use dimensional analysis to determine how the linear acceleration a in m/s2 of a particle traveling in a circle depends on some,
    11·1 answer
  • Can u help me please
    8·1 answer
  • What is a molecule?
    15·2 answers
  • Need help with #7 and 8 ASAP
    12·1 answer
  • I don't understand when to use the formule with the constant k, and when to use the formula without it.
    8·1 answer
  • A solid sphere of radius 40.0cm has a total positive charge of 26.0μC uniformly distributed throughout its volume. Calculate the
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!