I think you almost got it.
At the top, the velocity only has horizontal component, so v=12 m/s is v_x, which is v*cos(theta), because v_x is constant, so the same when it was launched or now.
With the value of the initial speed (28 m/s, which is the total speed), you can set
v_x = v * cos( theta ) ---> 12 = 28*cos(theta) --> cos(theta)=12/28=3/7
or theta = 64.62 deg, it is D. Think about it. I hope you see it.
Answer:
i think it is c if not im sorry if im wrong
Explanation:
Answer:
The distance the bungee cord that would be stretched 0.602 m, should be selected when pulled by a force of 380 N.
Explanation:
As from the given data
the length of the rope is given as l=30 m
the stretched length is given as l'=41m
the stretched length required is give as y=l'-l=41-30=11m
the mass is m=95 kg
the force is F=380 N
the gravitational acceleration is g=9.8 m/s2
The equation of k is given by equating the energy at the equilibrium point which is given as

Here
m=95 kg, g=9.8 m/s2, h=41 m, y=11 m so

Now the force is
or

So here F=380 N, k=630.92 N/m

So the distance is 0.602 m
Answer:
44.08 Volt
Explanation:
N = 8, A = 0.0775 m^2, R = 8.53 ohm, B = 0.222 T, f = 51 Hz
e0 = N B A w
e0 = 8 x 0.222 x 0.0775 x 2 x 3.14 x 51
e0 = 44.08 Volt
Answer:
The correct answers to the question are
The following statements about neurons are NOT true
A. The resting membrane potential is generally in the range of -40 mv to -75 mv.
C. Neurons repolarize by opening chloride channels on the membrane.
D. An action potential can occur when the neuron's sodium gates open.
Explanation:
A. The resting membrane potential is generally in the range of -40 mv to -75 mv.
Not true the resting potential for neurons range from -70 to -80 mv
B. Maintaining resting membrane potential requires the use of energy from ATP True
The potential of the membrane arises from the splitting of potassium ions from the intracellular anions by agents powered by ATP
C. Neurons repolarize by opening chloride channels on the membrane
Not True
Repolarization occurs by the outward transit of the positively charged K⁺ from the cell
D. An action potential can occur when the neuron's sodium gates open.
Not True
An action potential takes place once the neuron transmits information along an axon. An action potential results when different ions pass through the membrane of the neuron