Answer:
<h2> v= 21.47m/s </h2>
Explanation:
For the car to turn at the about the centripetal force must not be greater than the static friction between the tires and the road
we will use the expression relating centripetal force and static friction below
let U represent the coefficient of static friction
Given that
U= 0.50
mass m= 1200-kg
radius r= 94.0 m
Assuming g= 9.81 m/s^2


substituting our given data in to expression we can solve for the speed V

making v the subject of formula we have

v= 21.47m/s
<em><u>hence the maximum velocity of the car is 21.47m/s</u></em>
Answer:
a) the spring will stretch 60.19 mm
with the same box attached as it accelerates upwards
b) spring will be relaxed when the elevator accelerates downwards at 9.81 m/s²
Explanation:
Given that;
Gravitational acceleration g = 9.81 m/s²
Mass m = 5 kg
Extension of the spring X = 50 mm = 0.05 m
Spring constant k = ?
we know that;
mg = kX
5 × 9.81 = k(0.05)
k = 981 N/m
a)
Given that; Acceleration of the elevator a = 2 m/s² upwards
Extension of the spring in this situation = X1
Force exerted by the spring = F
we know that;
ma = F - mg
ma = kX1 - mg
we substitute
5 × 2 = 981 × X1 - (5 ×9.81 )
X1 = 0.06019 m
X1 = 60.19 mm
Therefore the spring will stretch 60.19 mm
with the same box attached as it accelerates upwards
B)
Acceleration of the elevator = a
The spring is relaxed i.e, it is not exerting any force on the box.
Only the weight force of the box is exerted on the box.
ma = mg
a = g
a = 9.81 m/s² downwards.
Therefore spring will be relaxed when the elevator accelerates downwards at 9.81 m/s²
Answer:
Percent of Female Workers = 40%
Explanation:
The percentage of the female workers in the given group of workers can be easily found by the following formula:

where,
Total No. of Workers = 1200
No. of Female Workers = Total Workers - No. of Male Workers
No. of Female Workers = 1200 - 720 = 480
Therefore,

<u>Percent of Female Workers = 40%</u>
The rock it traveling really, really fast.
It is hard to exactly determine how fast bc u need the height of the cliff and how big the rock is.
Hope this helps and can I get brainliest answer!
Answer:
1. increases
2. increases
3. increases
Explanation:
Part 1:
First of all, since the box remains at rest, the horizontal net force acting on the box must equal zero:
F1 - fs = 0.
And this friction force fs is:
fs = Nμs,
where μs is the static coefficient of friction, and N is the normal force.
Originally, the normal force N is equal to mg, where m is the mass of the box, and g is the constant of gravity. Now, there is an additional force F2 acting downward on the box, which means it increases the normal force, since the normal force by Newton's third law, is the force due to the surface acting on the box upward:
N = mg + F2.
So, F2 is increasing, that means fs is increasing too.
Part 2:
As explained in the part 1, N = mg + F2. F2 is increasing, so the normal force is thus increasing.
Part 3:
In part 1 and part 2, we know that fs = Nμs, and since the normal force N is increasing, the maximum possible static friction force fs, max is also increasing.