12 V is the f.e.m.

of the battery. The potential difference that is applied to the motor is actually the fem minus the voltage drop on the internal resistance r:

this is equal to the voltage drop on the resistance of the motor R:

so we can write:

and using

and

we can find the current I:
1) 211m/s
2)240<span>°
3)759,600m or 759.6 km</span>
Energy E of EM radiation is given by the equation E=hf, where h is Planck's constant and f is frequency. It means energy E and frequency f are proportional so as we increase the frequency, energy also increases. Also, the relationship between the wavelength and frequency is c=λ*f where λ is the wavelength and f is frequency and c is the speed of light. This tells us the wavelength and frequency are inversely proportional. So as we increase the frequency the wavelength is getting smaller. So as we go from left to right the frequency increases, energy also increases and the wavelength is decreasing. Or, on the left side we should have low frequency, low radiant energy, and long wavelength. On the right side we should have high frequency, high radiant energy and low wavelength. That is the third graph.
Answer:
0.12 K
Explanation:
height, h = 51 m
let the mass of water is m.
Specific heat of water, c = 4190 J/kg K
According to the transformation of energy
Potential energy of water = thermal energy of water
m x g x h = m x c x ΔT
Where, ΔT is the rise in temperature
g x h = c x ΔT
9.8 x 51 = 4190 x ΔT
ΔT = 0.12 K
Thus, the rise in temperature is 0.12 K.