Answer:
Continental drift describes one of the earliest ways geologists thought continents moved over time. Today, the theory of continental drift has been replaced by the science of plate tectonics.
The theory of continental drift is most associated with the scientist Alfred Wegener. In the early 20th century, Wegener published a paper explaining his theory that the continental landmasses were “drifting” across the Earth, sometimes plowing through oceans and into each other. He called this movement continental drift.
Answer:
<em>Magnetic</em><em> </em><em>compass</em><em> </em><em>helps</em><em> </em><em>to </em><em>identify</em><em> </em><em>direction</em><em> </em><em>in </em><em>this </em><em>way </em><em>,</em><em> </em><em>this </em><em>compass</em><em> </em><em>work </em><em>because</em><em> </em><em>of </em><em>earth</em><em> </em><em>magnetic</em><em> field</em><em> </em><em>and </em><em>show</em><em> </em><em>us </em><em>direction</em><em> </em>
<em> </em><em> </em><em>hope</em><em> it</em><em> helps</em><em> and</em><em> your</em><em> day</em><em> will</em><em> be</em><em> full</em><em> of</em><em> happiness</em><em>. </em>^_^
This is a statement but yes a star forms inside nebulae which are gigantic clouds of gas. stars form inside as the gases own gravity pulls it together after which it becomes large enough to perform fusion and become a star.
Answer:
<em>Explicado a continuación</em>
Explanation:
Hay una pequeña diferencia conceptual entre la capacidad y el volumen de un objeto, a saber:
El volumen hace referencia al espacio que ocupa un objeto, mientras que la capacidad hace referencia al espacio que este contiene. Calcular el volumen de un cuerpo es medir cuánto ocupa mientras que calcular su capacidad es medir cuánto cabe en él.
En la práctica, ambos conceptos son usados indistintamente, ya que tienen unidades equivalentes.
El volumen tiene unidades de longitud al cubo, como por ejemplo:

y la capacidad se suele expresar en litros o unidades derivadas: litro, mililitro, centilitro, etc.
Como mencionamos, hay equivalencia engre los dos grupos de unidades. Entre las más conocidas están:

Answer:
v_max = (1/6)e^-1 a
Explanation:
You have the following equation for the instantaneous speed of a particle:
(1)
To find the expression for the maximum speed in terms of the acceleration "a", you first derivative v(t) respect to time t:
(2)
where you have use the derivative of a product.
Next, you equal the expression (2) to zero in order to calculate t:
![a[(1)e^{-6t}-6te^{-6t}]=0\\\\1-6t=0\\\\t=\frac{1}{6}](https://tex.z-dn.net/?f=a%5B%281%29e%5E%7B-6t%7D-6te%5E%7B-6t%7D%5D%3D0%5C%5C%5C%5C1-6t%3D0%5C%5C%5C%5Ct%3D%5Cfrac%7B1%7D%7B6%7D)
For t = 1/6 you obtain the maximum speed.
Then, you replace that value of t in the expression (1):

hence, the maximum speed is v_max = ((1/6)e^-1)a