Answer: 5 is the molarity
Explanation:
The molarity formula is moles over liters and that in your case is 2.50 moles divided by .500 L which results in 5 which is your answear hope this helped god bless
<span>Equation:2H2(g) + O2(g) → 2H2O(g)
</span><span>
Smaller container means less volume, and the molecules will hit the walls of the container more frequently because there's less space available and the pressure will go up. I guess this would mean that the side with fewer moles would be favored as a result. We count the number of moles on the reactants and products and find that there are fewer moles on the product side, so I guess this would favor the product formation.
</span>
<h3>
Answer:</h3>
2.125 g
<h3>
Explanation:</h3>
We have;
- Mass of NaBr sample is 11.97 g
- % composition by mass of Na in the sample is 22.34%
We are required to determine the mass of 9.51 g of a NaBr sample.
- Based on the law of of constant composition, a given sample of a compound will always contain the sample percentage composition of a given element.
In this case,
- A sample of 11.97 g of NaBr contains 22.34% of Na by mass
A sample of 9.51 g of NaBr will also contain 22.345 of Na by mass
% composition of an element by mass = (Mass of element ÷ mass of the compound) × 100
Mass of the element = (% composition of an element × mass of the compound) ÷ 100
Therefore;
Mass of sodium = (22.34% × 9.51 g) ÷ 100
= 2.125 g
Thus, the mass of sodium in 9.51 g of NaBr is 2.125 g
First, calculating the amount of zinc carbonate by multiplying the given mass of the ore by the percent zinc carbonate.
mass of zinc carbonate = (976 tons)(0.78)
= 761.28 tons
Then, calculate for %Zn in zinc carbonate
%Zn = ((65.38) / (125.39)) x 100%
% Zn = 52.141%
tons of Zn from the sample,
mass of Zn = (761.28 tons)(0.52141)
= 396.94 tons Zn