Answer:
Metals on the left of the Periodic Table.
Non-Metals on the top-right, plus Hydrogen.
Answer:
1.346 v
Explanation:
1) Fist of all we need to calculate the standard cell potential, one should look up the reduction potentials for the species envolved:
(oxidation)
→
E°=0.337 v
(reduction)
→
E°=1.679 v
(overall)
+8H^{+}_{(aq)}→
E°=1.342 v
2) Nernst Equation
Knowing the standard potential, one calculates the nonstandard potential using the Nernst Equation:
Where 'R' is the molar gas constant, 'T' is the kelvin temperature, 'n' is the number of electrons involved in the reaction and 'F' is the faraday constant.
The problem gives the [red]=0.66M and [ox]=1.69M, just apply to the Nernst Equation to give
E=1.346
Answer:
0.006 48 km/s
Explanation:
1. Convert miles to kilometres
14.5 mi × (1.609 km/1 mi) = 23.33 km
2. Convert hours to seconds
1 h × (60 min/1h) × (60 s/1 min) = 3600 s
3. Divide the distance by the time
14.5 mi/1 h = 23.3 km/3600 s = 0.006 48 km/s
Hello!
To find the number of moles that are in the given amount, we need to divide the total number of atoms by Avogadro's number, which is 1 mole is equal to 6.02 x 10^23 atoms.
5.0 x 10^25 / 6.02 x 10^23 ≈ 83.0564
Therefore, there are about 83.06 moles of iron (sigfig: 83 moles).