Many of the elements on the periodic table will always form ions that have the same charge. The alkali metals (shown in yellow) always form +1 ions. The alkaline earth metals (red) always form +2 ions. The halogens (blue) always form -1 ions.
Pb(NO3)2 (aq) + 2 NaI (aq) --> PbI2 (s) + 2 NaNO3 (aq)
Starting with with 200.0 grams of Pb(NO3)2 and 120.0 grams of NaI:
A. What is the limiting reagent?
B. How many grams of PbI2 is theoretically formed?
C. How many grams of the excess reactant remains?
D. If 48 grams of NaNO3 actually formed in the reaction, what is the percent yield of this reaction?
<u>Answer:</u> The pH of the buffer is 4.61
<u>Explanation:</u>
To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:
![pH=pK_a+\log(\frac{[\text{conjuagate base}]}{[\text{acid}]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5B%5Ctext%7Bconjuagate%20base%7D%5D%7D%7B%5B%5Ctext%7Bacid%7D%5D%7D%29)
We are given:
= negative logarithm of acid dissociation constant of weak acid = 4.70
= moles of conjugate base = 3.25 moles
= Moles of acid = 4.00 moles
pH = ?
Putting values in above equation, we get:

Hence, the pH of the buffer is 4.61
Answer:
200 Joules is the explosive energy in the inside the balloon. And that is
1 lb of TNT.
Explanation:

Volume of the balloon = V = 1 L = 
Pressure inside the balloon ,P= 200,000 Pa =
Explosive energy in the inside the balloon be E.
E = Pressure × Volume

1 lb of TNT = 
200 Joules =
1 lb of TNT
=
1 lb of TNT