Answer: the average velocity decreases
Explanation:
From the provided data we have:
Vessel avg. diameter[mm] number
Aorta 25.0 1
Arteries 4.0 159
Arteioles 0.06 1.4*10^7
Capillaries 0.012 2.9*10^9
from the information, let
be the mass flow rate,
is density, n number of vessels, and A is the cross-section area for each vessel
the flow rate is constant so it is equal for all vessels,
The average velocity is related to the flow rate by:

we clear the side where v is in:

area is π*R^2 where R is the average radius of the vessel (diameter/2)
we get:

you can directly see in the last equation that if we go from the aorta to the capillaries, the number of vessels is going to increase ( n will increase and R is going to decrease ) . From the table, R is significantly smaller in magnitude orders than n, therefore, it wont impact the results as much as n. On the other hand, n will change from 1 to 2.9 giga vessels which will dramatically reduce the average blood velocity
Answer:
b) River
the primary source of all water supply is to be said as River
Explanation:
Answer:
For civil engineering, the importance is that you want to ensure that your construction is in a good sturdy location.
Explanation:
Im at UNCC as a civil engineering student
Answer:
2750
Explanation:
The number of windings and the voltage are proportional.
__
Let n represent the number of windings to produce 110 Vac. Then the proportion is ...
n/110 = 300,000/12,000
n = 110(300/12) = 2750 . . . . multiply by 110
2750 windings would be needed to produce 110 Vac at the output.