Answer:
curly brackets are missing
Explanation:
The body of the main() function need to be enclosed in curly brackets. Try this:
int P = 3000;
int main( ) {
for (int t = 0; t < 10; t++) {
cout << P;
}
}
Brake system
Explanation: the engine doesn’t need to be running to make the brake system work the brake system it’s independent
The number of trays that should be prepared if the owner wants a service level of at least 95% is; 7 trays
<h3>How to utilize z-score statistics?</h3>
We are given;
Mean; μ = 15
Standard Deviation; σ = 5
We are told that the distribution of demand score is a bell shaped distribution that is a normal distribution.
Formula for z-score is;
z = (x' - μ)/σ
We want to find the value of x such that the probability is 0.95;
P(X > x) = P(z > (x - 15)/5) = 0.95
⇒ 1 - P(z ≤ (x - 15)/5) = 0.95
Thus;
P(z ≤ (x - 15)/5) = 1 - 0.95
P(z ≤ (x - 15)/5) = 0.05
The value of z from the z-table of 0.05 is -1.645
Thus;
(x - 15)/5 = -1.645
x ≈ 7
Complete Question is;
A bakery wants to determine how many trays of doughnuts it should prepare each day. Demand is normal with a mean of 15 trays and standard deviation of 5 trays. If the owner wants a service level of at least 95%, how many trays should he prepare (rounded to the nearest whole tray)? Assume doughnuts have no salvage value after the day is complete. 6 5 4 7 unable to determine with the above information.
Read more about Z-score at; brainly.com/question/25638875
#SPJ1
Answer:
eccentrcity of orbit is 0.22
Explanation:
GIVEN DATA:
Initial velocity of satellite = 8333.3 m/s
distance from the sun is 600 km
radius of earth is 6378 km
as satellite is acting parallel to the earth therefore
and radial component of given velocity is zero
we have
h = 6.97*10^6 *8333.3 = 58.08*10^9 m^2/s
we know that


so

solvingt for 

therefore eccentrcity of orbit is 0.22
Answer:
Energy produce in one year =20.49 x 10¹⁶ J/year
Explanation:
Given that
Plant produce 6.50 × 10⁸ J/s of energy.
It produce 6.50 × 10⁸ J in 1 s.
We know that
1 year = 365 days
1 days = 24 hr
1 hr = 3600 s
1 year = 365 x 24 x 3600 s
1 year = 31536000 s
So energy produce in 1 year = 31536000 x 6.50 × 10⁸ J/year
Energy produce in one year = 204984 x 10¹² J/year
Energy produce in one year =20.49 x 10¹⁶ J/year