When HCl reacts with a metal, hydrogen gas will be evolved. To test this gas, insert a burning splinter into the outlet of gas, the flame will be extinguished with a pop sound. This will confirm the gas is hydrogen.
<span>Equation:2H2(g) + O2(g) → 2H2O(g)
</span><span>
Smaller container means less volume, and the molecules will hit the walls of the container more frequently because there's less space available and the pressure will go up. I guess this would mean that the side with fewer moles would be favored as a result. We count the number of moles on the reactants and products and find that there are fewer moles on the product side, so I guess this would favor the product formation.
</span>
Answer:
No
Explanation:
I'm not educated enough on the matter but from what I've been taught water boils at 100 Celsius and it simultaneously evaporates.
<span>1.0 x 10-14. That is the value of Kw at 25 degrees C.
</span>
<u>Given:</u>
Enthalpy change (ΔH) for SO3 decomposition = +790 kJ
Moles of SO3 = 2.1 moles
<u>To determine:</u>
Energy required when 2.1 moles of SO3 reacts
<u>Explanation:</u>
The decomposition reaction is -
2SO3(g) → 2S(s) + 3O2 (g)
Energy required when 2 moles of SO3 reacts is 790 kJ
Thus, for 2.1 moles of SO3 the energy requirement would be
= 2.1 moles SO3 * 790 kJ/2 moles SO3 = 829.5 kJ
Ans: 830 kJ are required when 2.1 moles of SO3 reacts.