Answer:
The Earth, Stars, and Mars I guess...
Answer:
Digestion of food.
Explanation:
I hope my answer help you.
Answer: 317 joules
Explanation:
The quantity of heat energy (Q) gained by aluminium depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
In this case,
Q = ?
Mass of aluminium = 50.32g
C = 0.90J/g°C
Φ = (Final temperature - Initial temperature)
= 16°C - 9°C = 7°C
Then, Q = MCΦ
Q = 50.32g x 0.90J/g°C x 7°C
Q = 317 joules
Thus, 317 joules of heat is gained.
Answer:
4) Each cytochrome has an iron‑containing heme group that accepts electrons and then donates the electrons to a more electronegative substance.
Explanation:
The cytochromes are <u>proteins that contain heme prosthetic groups</u>. Cytochromes <u>undergo oxidation and reduction through loss or gain of a single electron by the iron atom in the heme of the cytochrome</u>:

The reduced form of ubiquinone (QH₂), an extraordinarily mobile transporter, transfers electrons to cytochrome reductase, a complex that contains cytochromes <em>b</em> and <em>c₁</em>, and a Fe-S center. This second complex reduces cytochrome <em>c</em>, a water-soluble membrane peripheral protein. Cytochrome <em>c</em>, like ubiquinone (Q), is a mobile electron transporter, which is transferred to cytochrome oxidase. This third complex contains the cytochromes <em>a</em>, <em>a₃</em> and two copper ions. Heme iron and a copper ion of this oxidase transfer electrons to O₂, as the last acceptor, to form water.
Each transporter "downstream" is <u>more electronegative</u><u> than its neighbor </u>"upstream"; oxygen is located in the inferior part of the chain. Thus, the <u>electrons fall in an energetic gradient</u> in the electron chain transport to a more stable localization in the <u>electronegative oxygen atom</u>.
Balance the equation first:
2 Fe+6 HNO3→2 Fe(NO3)3+3H2
Then calculate mass of Iron :
4.5×3.0×3.5 cm3(1 mL1 cm3)(7.87 g Fe1 ml)=371.86 g Fe
Now use Stoichiometry:
371.86 g Fe×(1 mol Fe55.85 g Fe)×(6 mol HNO32 mol Fe)=19.97 mol HNO3
Convert moles of nitric acid to grams
19.97 mol HNO3×(63.01 g HNO31 mol HNO3)=1258.3 g HNO3