Answer:
See explanation
Explanation:
For this question, we have to remember the effect of an atom with high <u>electronegativity</u> as "Br". If the "Br" atom is closer to the carboxylic acid group (COOH) we will have an <u>inductive effect</u>. Due to the electronegativity of Br, the electrons of the C-H bond would be to the Br, then this bond would be <u>weaker</u> and the compound will be more acid (because is easier to produce the hydronium ion ).
With this in mind, for A in the last compound, we have <u>2 Br atoms</u> near to the acid carboxylic group, so, we will have a high inductive effect, then the C-H would be weaker and we will have <u>more acidity</u>. Then we will have the compound with only 1 Br atom and finally, the last compound would be the one without Br atoms.
In B, the difference between the molecules is the <u>position</u> of the "Br" atom in the molecule. If the Br atom is closer to the acid group we will have a <u>higher inductive effect</u> and more <u>acidity</u>.
See figure 1
I hope it helps!
Answer:
D. The equipment needed to accommodate the high temperature and pressure will be expensive to produce.
Explanation:
Hello!
In this case, for the considered reaction, it is clear it is an exothermic reaction because it produces energy; and therefore, the higher the temperature the more reactants are yielded as the reverse reaction is favored. Moreover, since the effect of pressure is verified as favoring the side with fewer moles; in this case the products side (2 moles of ammonia).
In such a way, the high pressure favors the formation of ammonia whereas the high temperature the formation of hydrogen and nitrogen and therefore, option A is ruled out. Since the high pressure shifts the reaction rightwards and the high temperature leftwards, we would not be able to know whether the reaction has ended or not because it will be a "go and come back" process, that is why B is also discarded. Now, since hydrogen and nitrogen would be the "wastes", we discard C because they are not toxic. That is why the most accurate answer would be D. because it is actually true that such equipment is quite expensive.
Best regards!
Ethyne also known as Acetylene and is the simplest Alkyne belonging to Unsaturated Hydrocarbons. It contains triple bond between two carbon atoms in a molecule. Carbon atoms in Acetylene are sp Hybridized and has a linear shape with bond angle of 180° is present between C-C-H bonds. This compound is also called as Binary Compound because it is made up of two elements i.e. Carbon and Hydrogen. The terminal Hydrogen in Acetylene is slightly Acidic in nature, and this compound can donate terminal proton to any strong base. These compounds generally give Electrophillic Addition Reactions.
Sodium hypochlorite is used in iodoform test for the oxidation of alcohol to aldehyde as shown in the image attached:
Here sodium hypochlorite is formed by the reaction of NaOH with I2 that further oxides alcohols to aldehydes.
Answer:
<h2>
D</h2>
Explanation:
A chemical compound is a chemical substance composed of many identical molecules composed of atoms from more than one element held together by chemical bonds. A molecule consisting of atoms of only one element is therefore not a compound.
A pure chemical compound is a chemical substance that is composed of a particular set of molecules or ions that are chemically bonded. Two or more elements combined into one substance through a chemical reaction, such as water, form a chemical compound.