The molecular formula is D. C_8H_20O_4Si.
<em>Step 1</em>.Calculate the <em>empirical formula
</em>
a) Calculate the moles of each element
Moles of C= 196.01 g C × (1 mol C/12.01 g C) = 16.325 mol C
Moles of H = 41.14 g H × (1 mol H/1.008 g H) = 40.813 mol H
Moles of O = 130.56 g O × (1 mol O/16.00 g O) = 8.1650 mol O
Moles of Si = 57.29 g Si × (1 mol Si/28.085 g Si) = 2.0399 mol Si
b) Calculate the molar ratio of each element
Divide each number by the smallest number of moles and round off to an integer
C:H:O:Si = 8.0027:20.008:4.0027:1 ≈ 8:20:4:1
c) Write the empirical formula
EF = C_8H_20O_4Si
<em>Step </em>2. Calculate the <em>molecular formula</em>
EF Mass = 208.33 u
MF mass = 208.329 u
MF = (EF)_n
n = MF Mass/EF Mass = 208.329 u/208.33 u = 1.0000 ≈ 1
MF = C_8H_20O_4Si
The balanced reaction is:
MnO2<span>(s) + 4HCl(aq) → Cl2(g) + MnCl2(aq) + 2H2O(l)
</span>
We are given the amount of hydrochloric acid to be used for the reaction. This will be the starting point for the calculations.
1.82 mol HCl ( 1 mol Cl2 / 4 mol HCl) = 0.46 mol Cl2
Therefore, 0.46 mol of chlorine gas is produced for the reaction of hydrochloric acid and manganese oxide.
2C3H7OH + 9O2 → 6CO2 + 8H2O
Answer:
The amount of thermal energy stored in an object depends on three things.
- The mass of the object.
- The temperature of the object.
- The amount of energy that the particular material stores per degree of temperature.
Answer:
Sea breeze moves from the areas of higher pressure on the water in the direction of the areas of lower pressure on land.
Explanation:
Sea breeze moves from the areas of higher pressure on the water in the direction of the areas of lower pressure on land. Whereas, land breeze blows from the areas of higher pressure on land to the areas of lower pressure on water.