B
Orbitals fill in a way that all of them first gain one electron, and then they start receiving the second electron if any are left. Thus, the three will fill with one electron each first and then the fourth will go into the first.
1) first, we have to convert the grams to moles of AuCl3 using the molar mass of the molecule.
molar mass of AuCl3= 197 + (35.5 x 3)= 303.5 g/mol
73.4 g (1 mol AuCl3/ 303.5 g)= 0.242 moles
2) now. let's convert moles of AuCl3 to moles of chlorine gas (Cl2) using the mole-mole ratio
0.242 mol AuCl3 (3 mol Cl2/ 2 mol AuCl3)= 0.363 mol Cl2
3) finally, we convert moles to grams using the molar mass of Cl2.
molar mass of Cl2 = 35.5 x 2= 71.0 g/mol
0.363 mol Cl2 ( 71.0 g/ 1 mol)= 25.8 grams
Answer:
<em>K</em><em>+</em><em>Cl</em><em /><em>KCl</em>
Explanation:
because the reaction is between metal Potassium and Non-metal Chlorine
Answer:
I think u mean molar mass of ca(Mno4)2
if so it is 277.949 g/ mol
Answer:
-1.71 J/K
Explanation:
To solve this problem we use the formula
ΔS = n*ΔH/T
Where n is mol, ΔH is enthalpy and T is temperature.
ΔH and T are already given by the problem, so now we calculate n:
Molar Mass C₂H₅OH = 46 g/mol
2.71 g C₂H₅OH ÷ 46g/mol = 0.0589 mol
Now we calculate ΔS:
ΔS = 0.0589 mol * −4600 J/mol / 158.7 K
ΔS = -1.71 J/K