Answer:
15.8 ft/s
Explanation:
= Velocity of car A = 9 ft/s
a = Distance car A travels = 21 ft
= Velocity of car B = 13 ft/s
b = Distance car B travels = ft
c = Distance between A and B after 4 seconds = √(a²+b²) = √(21²+28²) = √1225 ft
From Pythagoras theorem
a²+b² = c²
Now, differentiating with respect to time

∴ Rate at which distance between the cars is increasing three hours later is 15.8 ft/s
The best and most correct answer among the choices provided by the question is decreases <span>.
</span>The potential energy of the object <span>decreases.</span>
Hope my answer would be a great help for you.
If you have more questions feel free to ask here at Brainly.
To solve the problem it is necessary to apply the Torque equations and their respective definitions.
The Torque is defined as,

Where,
I=Inertial Moment
Angular acceleration
Also Torque with linear equation is defined as,

Where,
F = Force
d= distance
Our dates are given as,
R = 30 cm = 0.3m
m = 1.5 kg
F = 20 N
r = 4.0 cm = 0.04 m
t = 4.0s
Therefore matching two equation we have that,

For a wheel the moment inertia is defined as,
I= mR2, replacing we have





Then the velocity of the wheel is

Therefore the correct answer is D.
Heat in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC(T2-T1)
Heat = 100(1)(60-20)
<span>Heat = 4000 calories addition to the system</span></span>
<span><span>
</span></span>
<span><span>Hope this answers the question. Have a nice day.</span></span>
Answer:
0.025V + (0.000218V/s³) t³
Explanation:
Parameters given:
Radius of coil, r = 3.85 cm = 0.0385 m
Number of turns, N = 450
Magnetic field, B = ( 1.20×10^(−2) T/s )t + (2.60×10^(−5) T/s4 )t^4.
The magnitude of Induced EMF is given as:
E = N * A * dB/dt
Where A is the area of the coil
First, we differentiate the magnetic field with respect to time:
dB/dt = 0.012 + 0.000104t³
Therefore, EMF will be:
E = 450 * 3.142 * (0.012 + 0.000104t³)
E = 2.096(0.012 + 0.000104t³)
E = 0.025V + (0.000218V/s³)t³