Answer:
Theoretical yield of the reaction is 121·38 g
The excess reactant is hydrogen
The limiting reactant is nitrogen
Explanation:
By assuming that the reaction between nitrogen and hydrogen taking place in presence of catalyst because at normal conditions the reaction between them will not occur
Number of moles of nitrogen taken are 100÷28 ≈ 3.57
Number of moles of hydrogen taken are 100÷2 = 50
Actually the reaction between nitrogen and hydrogen takes place according to the following equation
<h3>N

+ 3H

→ 2NH

</h3>
So from the equation for 1 mole of nitrogen and 3 moles of hydrogen we get 2 moles of ammonia
Here in the problem we have approximately 3·57 moles of nitrogen so we require 3×3·57 moles of hydrogen
∴ Number of moles of hydrogen required is 10·71
But we have 50 moles of hydrogen
∴ Excess reagent is hydrogen and limiting reagent is nitrogen
Number of moles of ammonia produced is 2×3·57 = 7·14
Weight of ammonia is 17 g
∴ Amount of ammonia produced is 17×7·14 = 121·38 g
∴ Theoretical yield of the reaction is 121·38 g
The answer is powder because if it was a small crystal it the molecules are tightly compact same with the small cube but there less compact, powder is loose and more spread out and easier to mix so it would react the fastest
Explanation:
A low-pressure area, or "low", is a region where the atmospheric pressure at sea level is below that of surrounding locations. Low-pressure systems form under areas of wind divergence that occur in upper levels of the troposphere.
Answer:
6.61 Pounds
Solution:
Step 1: Calculate Mass of Water as;
Density = Mass ÷ Volume
Solving for Mass,
Mass = Density × Volume ------ (1)
As,
Density of Water = 1 g.cm⁻³
And,
3 L of Water = 3000 cm³
Putting values in equation 1,
Mass = 1 g.cm⁻³ × 3000 cm³
Mass = 3000 g
Step 2: Convert Grams into Pounds;
As,
1 Gram = 0.002204 Pounds
So,
3000 Grams = X Pounds
Solving for X,
X = (3000 Grams × 0.002204 Pounds) ÷ 1 Gram
X = 6.61 Pounds