Answer:
151.4863 years
Explanation:
Half life, t1/2 = 100 years
Initial concentration,[A]o = 100%
Final concentration, [A] = 35% (after 65% have been decayed)
Time = ?
Half life for a first Order reaction is given as;
t1/2 = ln (2) / k
k = ln(2) / 100
k = 0.00693y-1
The integral rate law for first order reactions is given as;
ln[A] = ln[A]o − kt
kt = ln[A]o - ln[A]
t = ( ln[A]o - ln[A]) / k
t = [ln(100) - ln(35)] /0.00693
t = 1.0498 / 0.00693
t = 151.4863 years
Answer:
One
Explanation:
Because it reaches an equibrum state so it's equals to one
Answer:
7200 kPa
Explanation:
Applying,
PV/T = P'V'/T'................ Equation 1
Where P = Initial pressure of neon gas, V = Initial volume of neon gas, T = Initial temperature of neon gas, P' = Final pressure of neon gas, V' = Final volume of neon gas, T' = Final Temperature of neon gas
Make P' the subject of the equation
P' = PVT'/V'T.............. Equation 2
Given: P = 900 kPa, V = 8.0 L, T = 300 K, V' = 2.0 L, T' = 600 K
Substitute these values into equation 2
P' = (900×8×600)/(2×300)
P' = 7200 kPa