Answer:

Explanation:
Given that:
The direction of the applied tensile stress =[001]
direction of the slip plane = [
01]
normal to the slip plane = [111]
Now, the first thing to do is to calculate the angle between the tensile stress and the slip by using the formula:
![cos \lambda = \Big [\dfrac{d_1d_2+e_1e_2+f_1f_2}{\sqrt{(d_1^2+e_1^2+f_1^2)+(d_2^2+e_2^2+f_2^2) }} \Big]](https://tex.z-dn.net/?f=cos%20%5Clambda%20%3D%20%5CBig%20%5B%5Cdfrac%7Bd_1d_2%2Be_1e_2%2Bf_1f_2%7D%7B%5Csqrt%7B%28d_1%5E2%2Be_1%5E2%2Bf_1%5E2%29%2B%28d_2%5E2%2Be_2%5E2%2Bf_2%5E2%29%20%7D%7D%20%5CBig%5D)
where;
= directional indices for tensile stress
= slip direction
replacing their values;
i.e
= 0 ,
= 0
= 1 &
= -1 ,
= 0 ,
= 1
![cos \lambda = \Big [\dfrac{(0\times -1)+(0\times 0) + (1\times 1) }{\sqrt{(0^2+0^2+1^2)+((-1)^2+0^2+1^2) }} \Big]](https://tex.z-dn.net/?f=cos%20%5Clambda%20%3D%20%5CBig%20%5B%5Cdfrac%7B%280%5Ctimes%20-1%29%2B%280%5Ctimes%200%29%20%2B%20%281%5Ctimes%201%29%20%7D%7B%5Csqrt%7B%280%5E2%2B0%5E2%2B1%5E2%29%2B%28%28-1%29%5E2%2B0%5E2%2B1%5E2%29%20%7D%7D%20%5CBig%5D)

Also, to find the angle
between the stress [001] & normal slip plane [111]
Then;
![cos \ \phi = \Big [\dfrac{d_1d_3+e_1e_3+f_1f_3}{\sqrt{(d_1^2+e_1^2+f_1^2)+(d_3^2+e_3^2+f_3^2) }} \Big]](https://tex.z-dn.net/?f=cos%20%5C%20%20%5Cphi%20%3D%20%5CBig%20%5B%5Cdfrac%7Bd_1d_3%2Be_1e_3%2Bf_1f_3%7D%7B%5Csqrt%7B%28d_1%5E2%2Be_1%5E2%2Bf_1%5E2%29%2B%28d_3%5E2%2Be_3%5E2%2Bf_3%5E2%29%20%7D%7D%20%5CBig%5D)
replacing their values;
i.e
= 0 ,
= 0
= 1 &
= 1 ,
= 1 ,
= 1
![cos \ \phi= \Big [ \dfrac{ (0 \times 1)+(0 \times 1)+(1 \times 1)} {\sqrt {(0^2+0^2+1^2)+(1^2+1^2 +1^2)} } \Big]](https://tex.z-dn.net/?f=cos%20%5C%20%20%5Cphi%3D%20%5CBig%20%5B%20%5Cdfrac%7B%20%280%20%5Ctimes%201%29%2B%280%20%5Ctimes%201%29%2B%281%20%5Ctimes%201%29%7D%20%7B%5Csqrt%20%7B%280%5E2%2B0%5E2%2B1%5E2%29%2B%281%5E2%2B1%5E2%20%2B1%5E2%29%7D%20%7D%20%5CBig%5D)

However, the critical resolved SS(shear stress)
can be computed using the formula:

where;
applied tensile stress
13.9 MPa
∴


Answer:
winter viscosity grades
Explanation:
The “W”/winter viscosity grades describe the oil's viscosity under cold temperature engine starting conditions. There's a Low Temperature Cranking Viscosity which sets a viscosity requirement at various low temperatures to ensure that the oil isn't too thick so that the starter motor can't crank the engine over.
Answer:
Explanation:
Pie charts generally should have no more than eight segments.
Answer:
Determine the added thrust required during water scooping, as a function of aircraft speed, for a reasonable range of speeds.= 132.26∪
Explanation:
check attached files for explanation
Answer:
Codes for each of the problems are explained below
Explanation:
PROBLEM 1 IN C++:
#include<iostream>
using namespace std;
//fib function that calculate nth integer of the fibonacci sequence.
void fib(int n){
// l and r inital fibonacci values for n=1 and n=2;
int l=1,r=1,c;
//if n==1 or n==2 then print 1.
if(n==1 || n==2){
cout << 1;
return;
}
//for loop runs n-2 times and calculates nth integer of fibonacci sequence.
for(int i=0;i<n-2;i++){
c=l+r;
l=r;
r=c;
cout << "(" << i << "," << c << ") ";
}
//prints nth integer of the fibonacci sequence stored in c.
cout << "\n" << c;
}
int main(){
int n; //declared variable n
cin >> n; //inputs n to find nth integer of the fibonacci sequence.
fib(n);//calls function fib to calculate and print fibonacci number.
}
PROBLEM 2 IN PYTHON:
def fib(n):
print("fib({})".format(n), end=' ')
if n <= 1:
return n
else:
return fib(n - 1) + fib(n - 2)
if __name__ == '__main__':
n = int(input())
result = fib(n)
print()
print(result)