I don't exactly understand the question but I'll try my best to answer it and help you. You need energy in order to go up the ramp and cover the distance. I hope this helps! :)
Answer:
The net electric field at the midpoint is 6.85 x 10^7 N/C.
Explanation:
q = − 8.3 μC
q' = + 7.8 μC
d = 9.2 cm
d/2 = 4.6 cm
The electric field due to the charge q at midpoint is
leftwards
The electric field due to the charge q' at midpoint is

The resultant electric field at mid point is
E'' = E + E' = (3.53 + 3.32) x 10^7 = 6.85 x 10^7 N/C
Explanation:
Efficiency is a way of describing the amount of useful output a process or machine can generate as a percentage of the input required to make it go. In other words, it compares how much energy is used to do work versus how much is lost or wasted to the environment. The more efficient the machine, the less energy wasted.
For example, if a heat engine is able to turn 75 percent of the fuel it receives into motion, while 25 percent is lost as heat in the process, it would be 75 percent efficient. Out of the original 100 percent of the fuel, 75 percent was output as useful work.
the equation:
energy efficiency =useful output energy/total input energy
Answer:
Explanation:
Due to heat energy , metal expands . Formula for linear expansion is as follows .
L = l ( 1 + α Δt )
where L is expanded length , l is original length , α is coefficient of linear expansion and Δt is increase in temperature .
To pass the sphere through the ring , the diameter of both ring and sphere should be same after heating . Let after increase of temperature Δt , their diameter becomes same as L . The linear coefficient of brass and steel are
20 x 10⁻⁶ and 12 x 10⁻⁶ respectively .
For steel sphere ,
L = 25 ( 1 + 12 x 10⁻⁶ Δt )
For brass ring
L = 24.9 ( 1 + 20 x 10⁻⁶ Δt )
25 ( 1 + 12 x 10⁻⁶ Δt ) = 24.9 ( 1 + 20 x 10⁻⁶ Δt )
1.004( 1 + 12 x 10⁻⁶ Δt ) = ( 1 + 20 x 10⁻⁶ Δt )
1.004 + 12.0482 x 10⁻⁶ Δt = 1 + 20 x 10⁻⁶ Δt
.004 = 7.9518 x 10⁻⁶ Δt
Δt = 4000 / 7.9518
= 503⁰C.
final temp = 503 + 15 = 518⁰C .