The mass number of an isotope can be expressed <span>by simply writing the name of the element or symbol followed by a hyphen and the mass number.
Example:
Carbon-13, Carbon-14
Oxygen-17
Uranium-235
</span>
Answer:
Kc = [CH₄] / [H₂]²
Kp = [CH₄] / [H₂]² * (0.082*T)^-1
Explanation:
Equilibrium constant, Kc, is defined as the ratio of the concentrations of the products over the reactants. Also, each concentration of product of reactant is powered to its coefficient.
<em>Pure solids and liquids are not taken into account in an equilibrium</em>
Thus, for the reaction:
C(s)+ 2H₂(g) ⇌ CH₄(g)
Equilibrium constant is:
<h3>Kc = [CH₄] / [H₂]²</h3>
Now, using the formula:
Kp = Kc* (RT)^Δn
<em>Where R is gas constant (0.082atmL/molK), T is the temperature of the reaction and Δn is difference in coefficients of gas products - coefficients of gas reactants (1 - 2= -1)</em>
Replacing:
<h3>Kp = [CH₄] / [H₂]² * (0.082*T)^-1</h3>
<em />
Explanation:
Over 99.9% percent of an atom's mass resides in the nucleus. The protons and neutrons in the center of the atom are about 2000 times heavier than the electrons orbiting around it.
Because the electrons are so light by comparison,they represent only a tiny fraction of a percent of the atom's total weight.
Hope this answer helps you!
Answer:
10
Explanation:
Given endpoints:
E (-2,2) and F(4, -6)
To find the distance between two points;
Use the expression below;
D =
x₁ = -2,
x₂ = 4
y₁ = 2
y₂ = -6
Insert the parameters and solve;
D = 
D =
= 10
Answer: -
Kinetic energy.
Explanation: -
Solids have the least kinetic energy and the highest intermolecular force of attraction among the three states of matter.
When heat energy is supplied to the solid, the kinetic energy of the solid particles increases. At some point, the kinetic energy becomes comparable to the intermolecular force of attraction. At that point solids change into liquids.
When further heat energy is given, at certain point the kinetic energy becomes far greater than the intermolecular forces of attraction. At that point it becomes gas.