Let the cold water go up x degrees.
Let the hot water go down 100 - x degrees.
The formula for heat exchange is m*c*delta t
Givens
Ice
deltat = x
m = 0.50 kg
c = 4.18
Hot water
deltat = 100 - x
m = 1.5 kg
c = 4.18
Formula
The heat up = heat down
0.50 * c * x = 1.5 * c * (100 - x) Divide both sides by c
Solution
0.50 *x = 1.5*(100 - x) Remove the brackets.
0.5x = 150 - 1.5x Add 1.5x to both sides.
0.5x + 1.5x = 150 - 1.5x + 1.5x Combine like terms
2x = 150 Divide by 2
x = 75
Answer
A
The correct answer is 195.6 N
Explanation:
Different from the mass (total of matter) the weight is affected by gravity. Due to this, the weight changes according to the location of a body in the universe as gravity is not the same in all planets or celestial bodies. Moreover, this factor is measured in Newtons and it can be calculated using this simple formula W (Weight) = m (mass) x g (force of gravity). Now, leps calculate the weigh of someone whose mass is 120 kg and it is located on the moon:
F = 120 kg x 1.63 m/s2
F= 195.6 N
Answer:
Explanation:
Given that:
mass of stone (M) = 0.100 kg
mass of bullet (m) = 2.50 g = 2.5 ×10 ⁻³ kg
initial velocity of stone (
) = 0 m/s
Initial velocity of bullet (
) = (500 m/s)i
Speed of the bullet after collision (
) = (300 m/s) j
Suppose we represent
to be the velocity of the stone after the truck, then:
From linear momentum, the law of conservation can be applied which is expressed as:





∴
The magnitude now is:


Using the tangent of an angle to determine the direction of the velocity after the struck;
Let θ represent the direction:


Answer:
640 nanometer setara dengan 6.4e-7 meter
Answer:
h=2.86m
Explanation:
In order to give a quick response to this exercise we will use the equations of conservation of kinetic and potential energy, the equation is given by,

There is no kinetic energy in the initial state, nor potential energy in the end,

In the final kinetic energy, the energy contributed by the Inertia must be considered, as well,

The inertia of the bodies is given by the equation,



On the other hand the angular velocity is given by

Replacing these values in the equation,

Solving for h,
