Answer:
4.56 X 10^ -4 g/mL
Explanation:
A solution is prepared by diluting 6.0 mL of a 7.6 x 10-4 g/mL solution to a total volume of 10.0 mL. Calculate the concentration of the dilute solution.
(7.6 X10^-4 gm/m L) x( 6.0 m L ) = 45.6 X 10^-4 g
this is dissolved )in 10 m L=45.6 X 10^-4 g/ 10
4.56 X 10^ -4 g/mL
check
6/10 =0.6
4.56/7.6 = o.,6
yeag
Explanation:
2SrO + 4NO2 + O. The thermal decomposition of strontium nitrate to produce strontium oxide, nitrogen dioxide and oxygen. This reaction takes place at a temperature of over 570°C
Answer: 1+
Justification:
The ionization energies tell the amount of energy needed to release an electron and form a ion. The first ionization energy if to loose one electron and form the ion with oxidation state 1+, the second ionization energy is the energy to loose a second electron and form the ion with oxidation state 2+, the third ionization energy is the energy to loose a third electron and form the ion with oxidation state 3+.
The low first ionization energy of element 2 shows it will lose an electron relatively easily to form the ion with oxidations state 1+.
The relatively high second ionization energy (and third too) shows that it is very difficult for this atom to loose a second electron, so it will not form an ions with oxidation state 2+. Furthermore, given the relatively high second and third ionization energies, you should think that the oxidation states 2+ and 3+ for element 2 never occurs.
Therefore, the expected oxidation state for the most common ion of element 2 is 1+.