Answer:
Sea breeze moves from the areas of higher pressure on the water in the direction of the areas of lower pressure on land.
Explanation:
Sea breeze moves from the areas of higher pressure on the water in the direction of the areas of lower pressure on land. Whereas, land breeze blows from the areas of higher pressure on land to the areas of lower pressure on water.
Answer:
by moving between defined energy levels
Answer:
1. ionic bonds
2. metallic bonds
3. share
4. metal
5. non-metal
6. metals
7. NaCl ( sodium chloride )
8. CO2 ( carbon dioxide )
9. Cu ( copper )
<em>i</em><em> </em><em>hope</em><em> </em><em>it</em><em> </em><em>helped</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
Answer:
Explanation:
The result will be affected.
The mass of KHP weighed out was used to calculate the moles of KHP weighed out (moles = mass/molar mass).
Not all the sample is actually KHP if the KHP is a little moist, so when mass was used to determine the moles of KHP, a higher number of moles than what is actually present would be obtained (because some of that mass was not KHP but it was assumed to be so. Therefore, there is actually a less present number of moles than the certain number that was thought of.
During the titration, NaOH reacts in a 1:1 ratio with KHP. So it was determined that there was the same number of moles of NaOH was the volume used as there were KHP in the mass that was weighed out. Since there was an overestimation in the moles of KHP, then there also would be an overestimation in the number of moles of NaOH.
Thus, NaOH will appear at a higher concentration than it actually is.
Answer:
C)52g KCl in 100g water at 80°C
Explanation:
A saturated solution is one that contains as much solute as it can dissolve in the presence of excess solute at that particular temperature.
A solutibility curve is a graph that shows the variability with temperature of the solubility of a solute in a given solvent. A solutibility curve can provide information of whether a solution formed frommthe solute and solvent are saturated or not at a given temperature.
From the solubility curve in the attachment below:
A) A saturated solution of NH₄Cl will contain about 52 g solute per 100 g sat 50 °C. Thus, a solution of 40 g NH₄Cl in 100 g water at 50 °C is an unsaturated solution.
B) A saturated solution of SO₂ at 10°C will contain about 70 g of solute in 100 g of water. Thus a solution of 2g SO₂ in 100g water at 10°C is an unsaturated solution.
C) A saturated solution of KCl at 80 °C will contain about 52 g of solute in 100 g of water. Thus, a solution of 52g KCl in 100g water at 80°C is a saturated solution.
D) A saturated solution of Kl at 20 °C will contain about 145 g of solute in 100 g of water. Thus, a solution of 120g KI in 100g water at 20°C is an unsaturated solution.