Answer:
C
Explanation:
To solve this question, we will need to develop an expression that relates the diameter 'd', at temperature T equals the original diameter d₀ (at 0 degrees) plus the change in diameter from the temperature increase ( ΔT = T):
d = d₀ + d₀αT
for the sphere, we were given
D₀ = 4.000 cm
α = 1.1 x 10⁻⁵/degrees celsius
we have D = 4 + (4x(1.1 x 10⁻⁵)T = 4 + (4.4x10⁻⁵)T EQN 1
Similarly for the Aluminium ring we have
we were given
d₀ = 3.994 cm
α = 2.4 x 10⁻⁵/degrees celsius
we have d = 3.994 + (3.994x(2.4 x 10⁻⁵)T = 3.994 + (9.58x10⁻⁵)T EQN 2
Since @ the temperature T at which the sphere fall through the ring, d=D
Eqn 1 = Eqn 2
4 + (4.4x10⁻⁵)T =3.994 + (9.58x10⁻⁵)T, collect like terms
0.006=5.18x10⁻⁵T
T=115.7K
Answer:
The H-R diagram can be used by scientists to roughly measure how far away a star cluster or galaxy is from Earth. This can be done by comparing the apparent magnitudes of the stars in the cluster to the absolute magnitudes of stars with known distances (or of model stars).
1. Frequency: 
The frequency of a light wave is given by:

where
is the speed of light
is the wavelength of the wave
In this problem, we have light with wavelength

Substituting into the equation, we find the frequency:

2. Period: 
The period of a wave is equal to the reciprocal of the frequency:

The frequency of this light wave is
(found in the previous exercise), so the period is:

I definitely agree with choise that you consider to be as a correct one. I am pretty sure that prganism is correct because this is a unit which ebrases all the mentioned points. And in simple words, the rest of options represent collective objects but you have to answer with sole one. Hope you find it helpful.