1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PIT_PIT [208]
3 years ago
11

What are all the kinds of kinematic equations ​

Physics
1 answer:
inysia [295]3 years ago
4 0
There are four (4) kinematic equations, which relate to displacement, D, velocity, v, time, t, and acceleration, a. Kinematic Equations Formula Questions

v=v0+at. v = v 0 + at.
d=12(v0+v)t d = 1 2 ( v 0 + v ) t or alternatively vaverage=dt. v average = d t.
d=v0t+(at22)
v2=v20+2ad.


Hope this helps ;)


You might be interested in
At a rock concert, the sound intensity 1.0 m in front of the bank of loudspeakers is 0.10 W/m². A fan is 30 m from the loudspeak
Klio2033 [76]

To solve this problem we will apply the concepts related to the Area, the power and the proportionality relationships between intensity and distance.

The expression for sound power is,

P = AI

Here,

A = Area

I = Intensity

P = Power

At the same time the area can be written as,

A = \frac{\pi d^2}{4}

Now the intensity is inversely proportional to the square of the distance from the source, then

I \propto \frac{1}{r^2}

The expression for the intensity at different distance is

\frac{I_1}{I_2}= \frac{r^2_2}{r_1^2}

Here,

I_1 = Intensity at distance 1

I_2 = Intensity at distance 2

r_1 = Distance 1 from light source

r_2 = Distance 2 from the light source

If we rearrange the expression to find the intensity at second position we have,

I_2 = I_1 (\frac{r_1^2}{r_2^2})

If we replace with our values at this equation we have,

I_2 = (0.10W/m^2)(\frac{1.0m^2}{30.0m^2})

I_2 = 1.11*10^{-4} W/m^2

Now using the equation to find the area we have that

A = \frac{\pi (8.4*10^{-3}m)^2}{4}

A = 5.5*10^{-5}m^2

Finally with the intensity and the area we can find the sound power, which is

P = AI

P = (5.5*10^{-5}m^2)(1.11*10^{-4}W/m^2)

P = 6.1*10^{-9}J/s

Power is defined as the quantity of Energy per second, then

E = 6.1*10^{-9}J

8 0
3 years ago
Two stars have the same radius but have very different temperatures. the red star has a surface temperature of 3,000 k and the b
dangina [55]
I would say that insofar as the two stars temperatures are presumably closely related to their luminosity, that the blue star at 156,100 k compared to 3000k for the red star then the blue star has a luminosity of 52 times that of the red star.
4 0
3 years ago
An electron moving parallel to a uniform electric field increases its speed from 2.0 × 10^7 m/s to 4.0 × 10^7 m/s over a distanc
julia-pushkina [17]

Answer:

E = 2.84 * 10^5 N/C

Explanation:

The speed increased from 2.0 * 10^7 m/s to 4.0 * 10^7 m/s over a 1.2 cm distance.

Let us find the acceleration:

v^2 = u^2 + 2as

(4.0 * 10^7)^2 = (2.0 * 10^7)^2 + 2 * a * 0.012\\\\(4.0 * 10^7)^2 - (2.0 * 10^7)^2 = 0.024a\\\\1.2 * 10^{15}= 0.024a\\\\a = 1.2 * 10^{15} / 0.024\\\\a = 5 * 10^{16} m/s^2

Electric force is given as the product of charge and electric field strength:

F = qE

where q = electric charge

E = Electric field strength

Force is generally given as:

F = ma

where m = mass

a = acceleration

Equating both:

ma = qE

E = ma / q

For an electron:

m = 9.11 × 10^{-31} kg

q = 1.602 × 10^{-19} C

Therefore, the electric field strength of the electron is:

E = \frac{9.11 * 10^{-31} * 5 * 10^{16}}{1.602 * 10^{-19}} \\\\E = 2.84 * 10^5 N/C

8 0
3 years ago
On a vacation flight, you look out the window of the jet and wonder about the forces exerted on the window. Suppose the air outs
user100 [1]

Answer:

A) \Delta P =  14512.5 Pa = 14.512 kPa

B) F = 1632.65 N

Explanation:

Given details

outside air speed is given as v_2 = 150 m/s

since inside air is atmospheric , v_1 = 0 m/s

a) By using bernoulli equation between outside and inside of flight

P_1 + \frac{1}{2} \rho v_1^2 + \rho gh = P_2 + \frac{1}{2} \rho v_2^2 + \rho gh

\Delta P = \frac{1}{2} \rho v_2^2 - \frac{1}{2} \rho v_1^2

\Delta P = \frac{1}{2} \rho[ v_2^2 -v_1^2]

\Delta P = \frac{1}{2} 1.29 [ 150^2 - 0^2]

\Delta P =  14512.5 Pa = 14.512 kPa

b) force exerted on window

Area of window  = 25\times 45 = 1125 cm^2 = 0.1125 m^2

We know that force is given as

F = P\times A

F = 14512.5 \times 0.1125

F = 1632.65 N

5 0
3 years ago
A wave has a wavelength of 30 mm and a frequency of 5.0 hertz. What is its speed?
Alenkinab [10]
                 Wave speed  =  (frequency) x (wavelength)

                                       =  (5 / second)  x  (30 mm) 

                                       =      150 mm/second  =  0.15 meter/second .
8 0
3 years ago
Other questions:
  • I don’t understand ???? I can use any help you can give?
    5·1 answer
  • What does a equal? 3/2 a -13=5​
    14·2 answers
  • A star has an absolute magnitude of 4 and a surface temperature of 5,000 degrees C. According to the HR diagram, list the type o
    13·1 answer
  • A stone is thrown vertically up. What kind of energy did the stone have initially? What happens to this energy as the stone asce
    10·1 answer
  • Two moles of helium gas initially at 438 K and 0.44 atm are compressed isothermally to 1.61 atm. Find the final volume of the ga
    10·1 answer
  • Which planet has the most gravity and why
    10·2 answers
  • Find the ratio of the Coulomb electric force Fe to the gravitational force Fo between two
    10·1 answer
  • Which activities demonstrate reaction time the most?
    14·1 answer
  • Despite the use of diffrent types of measurement in our country<br>​
    13·1 answer
  • A boulder of mass 4 kg rolls over a cliff and reaches the beach below with a velocity of 20 metres per second minus 1.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!