<span>122.0 km/hr. First let’s make sure all of our units are in the base meter form: i.e. convert 5km to 5000m. (We will convert back to km later). The first thing to do is look at the equation relating velocity, acceleration, and distance: Vf^2 = Vi^2 + 2*a*d, where Vf is final velocity, Vi is initial velocity, a is acceleration, and d is distance. 25^2 = 10^2 + 2*a*5000 =?> 625 = 100 +10000a => a= 0.0525m/s^2. Now that we have acceleration, we can use the same equation again with different numbers.: Vf^2 = Vi^2 + 2*a*d = 25^2 + 2*0. 0525m*5000 = 625 + 525 =1150 => Vf^2 = 1150 => 33.9m/s. Convert to km/hour: 33.9m/s * 1km/1000m *60s/1min * 60min/ 1 hr = 122.0 km/hr.</span>
<span>both the speed of the wave and the wavelength
- The frequency does not change, but the speed does. If that is true, then the wavelength must also change.</span>
Answer:
Explanation:
Two moles of an ideal gas at 3.0 atm and 10°C are heated up to 150 °C. If the volume is held constant during this heating, what is the final pressure? a. 4.5 atm.
Energy (E) = Planck's constant (h) * frequency (nu)

therefore, frequency ~
The angle of reflection is 42 degrees because it says the angle of incidence is equal to the angle of reflection