<span>NASA and the Mad Science Group of Montreal, Canada, have teamed in an effort to spark the imagination of children, encouraging more youth to pursue careers in science, technology, engineering and math. The two organizations recently signed a Space Act Agreement, officially launching the development of the Academy of Future Space Explorers.</span>
Answer:
(a) A = 0.0800 m, λ = 20.9 m, f = 11.9 Hz
(b) 250 m/s
(c) 1250 N
(d) Positive x-direction
(e) 6.00 m/s
(f) 0.0365 m
Explanation:
(a) The standard form of the wave is:
y = A cos ((2πf) t ± (2π/λ) x)
where A is the amplitude, f is the frequency, and λ is the wavelength.
If the x term has a positive coefficient, the wave moves to the left.
If the x term has a negative coefficient, the wave moves to the right.
Therefore:
A = 0.0800 m
2π/λ = 0.300 m⁻¹
λ = 20.9 m
2πf = 75.0 rad/s
f = 11.9 Hz
(b) Velocity is wavelength times frequency.
v = λf
v = (20.9 m) (11.9 Hz)
v = 250 m/s
(c) The tension is:
T = v²ρ
where ρ is the mass per unit length.
T = (250 m/s)² (0.0200 kg/m)
T = 1250 N
(d) The x term has a negative coefficient, so the wave moves to the right (positive x-direction).
(e) The maximum transverse speed is Aω.
(0.0800 m) (75.0 rad/s)
6.00 m/s
(f) Plug in the values and find y.
y = (0.0800 m) cos((75.0 rad/s) (2.00 s) − (0.300 m⁻¹) (1.00 m))
y = 0.0365 m
Bumper of a stationary bumper car. The momentum of the
stationary car increases. Which happens to the momentum of the moving bumper
car? It decreases. It stays the same. It is converted to inertia.
Bumper of a stationary bumper car. The momentum of the
stationary car increases. The momentum of the moving bumper car It is converted
to inertia.
Chattanooga - Chatype, London - Johnston, Berlin - BMF Change, Milan - Milano City, Eindhoven - Eindhoven, Stockholm - Stockholm Type, Minneapolis, and St. Paul - Twin.