The image as shown here can here can be used to describe charging by induction.
<h3>What is a charge?</h3>
A charge may be positive or negative. One of the methods of transferring a charge is by induction.
In this case, an objects induces an opposite charge on a material. The image as shown here can here can be used to describe charging by induction.
Learn more about charging by induction:brainly.com/question/10254645
#SPJ4
Answer:
The mass of the object, its acceleration due to gravity and the distance between the top of the hill and the ground level.
Explanation:
gravitational potential energy is the energy possessed by a body under influence of gravitational force by virtue of its position.
In order to determine the gravitational potential energy of the brick, we must know the mass (m) of the brick, its acceleration due to gravity (g) since it is acting under the influence of gravitational force and the distance between the top of the hill and the ground level. (The height).
Potential energy of a body is calculated as mass × acceleration due to gravity × height.
Answer:
At the highest point the velocity is zero, the acceleration is directed downward.
Explanation:
This is a free-fall problem, in the case of something being thrown or dropped, the acceleration is equal to -gravity, so -9.80m/s^2. So, the acceleration is never 0 here.
I attached an image from my lecture today, I find it to be helpful. You can see that because of gravity the acceleration is pulled downwards.
At the highest point the velocity is 0, but it's changing direction and that's why there's still an acceleration there.
Answer:
V(t1-t0)
Explanation:
Moving 'uniformly' means constant velocity (speed). the formula for constant speed motion is
=( change in position/ change in time)
where,
V is speed
given in the statement :
change in time = t = t1-t0
let the constant speed be ' V '
disance = X = X1-X0
applying the above mentioned formula: V = 
V = X/t
X = Vt
the distance X1-X0 = Vt =V(t1-t0)
<span>A fence runs all the way around the house but never moves.</span>