Newton's 2nd law of motion:
Force = (mass) x (acceleration)
= (0.314 kg) x (164 m/s²)
= 51.5 newtons
(about 11.6 pounds) .
Notice that the ball is only accelerating while it's in contact with the racket.
The instant the ball loses contact with the racket, it stops accelerating, and
sails off in a straight line at whatever speed it had when it left the strings.
Answer:
You need a motor and a battery
Explanation:
Answer:
i hope this helps some
Explanation:
The time-averaged power of a sinusoidal wave is proportional to the square of the amplitude of the wave and the square of the angular frequency of the wave. This is true for most mechanical waves. If either the angular frequency or the amplitude of the wave were doubled, the power would increase by a factor of four.
The speed of a wave is dependant on four factors: wavelength, frequency, medium, and temperature. Wave speed is calculated by multiplying the wavelength times the frequency (speed = l * f).
B, air blowing from across the field is as a bullet fired from a rifle
Answer:
(A) 
(B) s = 146.664 m
Explanation:
We have given car starts from the rest so initial velocity u = 0 m /sec
Final velocity v = 88 km/hr
We know that 1 km = 1000 m
And 1 hour = 3600 sec
So 
Time is given t = 12 sec
(A) From first equation of motion v = u+at
So 

So acceleration of the car will be 
(b) From third equation of motion 
So 
s = 146.664 m
Distance traveled by the car in this interval will be 146.664 m