Answer: Option (C) is the correct answer.
Explanation:
Chemical formula of a secondary amide is R'-CONH-R, where R and R' can be same of different alkyl or aryl groups. Here, the hydrogen atom of amide is attached to more electronegative oxygen atom of the C=O group.
Therefore, the hydrogen atom will be more strongly held by the electronegative oxygen atom. As a result, there will be strongly hydrogen bonded in the liquid phase of secondary amide.
Whereas chemical formula of nitriles is RCN, ester is RCOOR' and acid chlorides are RCOCl. As no hydrogen bonding occurs in any of these compounds because hydrogen atom is not being attached to an electronegative atom.
Thus, we can conclude that secondary amides are strongly hydrogen bonded in the liquid phase.
Answer: The correct option is The properties of a noble gas.
Explanation: There are 7 periods in the periodic table.
The last element of each period are Helium (He), Neon (Ne), Argon (Ar), Krypton (Kr), Xenon (Xe), Radon (Rn) and Ununoctium (Uuo).
- The electronic configuration for Helium is
. For He, The outermost electrons are 2.
- The electronic configuration for all the other elements is
( where, n = 2, 3, 4, 5, 6 and 7 respectively). For all the other gases, the outermost electrons are 8.
All these elements have stable electronic configuration and are not reactive in nature. Hence, they are considered as noble gases.
Therefore, the last element of each period always have the properties of a noble gas.
Answer:
Temperature usually increases when water condenses. What behavior of water is most directly responsible for this phenomenon? The release of heat by the formation of hydrogen bonds. Hydrogen bonds stabilize and keep the of ice farther apart than the water molecules of liquid water.