Normal is the other half of an action-reaction pair
If a person is sitting on a chair , there must be a gravitation force acting in downward direction which is equal to the weight of that person . That means the person is exerting a force on the chair equal to its weight . But the person is not falling down the chair , because of newtons third law of motion .
There must be a counter force which is equal and opposite to the force exerted by the person on the chair , in order to make net force equal to zero and to make that man in stationary state ( no movement ) .That force is called Normal force which is been acted by the chair on the person .This implies Normal is the other half of an action-reaction pair
learn more about Force:
brainly.com/question/14110395?referrer=searchResults
#SPJ4
Answer: The answer is A
Explanation: The bumper is the first part of an automobile to be impacted when in a head-on accident
The change in velocity is 10 mi/h (4.47 m/s)
Explanation:
The change in velocity of the motorcyclist is given by

where
v is the final velocity
u is the initial velocity
In this problem, we have
u = 0 (the motorbike starts from rest)
v = 10 mi/h
Therefore, the change in velocity is

And keeping in mind that
1 mile = 1609 m
1 h = 3600 s
We can convert it into m/s:

Learn more about velocity:
brainly.com/question/5248528
#LearnwithBrainly
Explanation:
it can be used to show how the parts of the cycle relate to one another
Answer:
The maximum potential energy of the system is 0.2 J
Explanation:
Hi there!
When the spring is stretched, it acquires potential energy. When released, the potential energy is converted into kinetic energy. If there is no friction nor any dissipative forces, all the potential energy will be converted into kinetic energy according to the energy conservation theorem.
The equation of elastic potential energy (EPE) is the following:
EPE = 1/2 · k · x²
Where:
k = spring constant.
x = stretching distance.
The elastic potential energy is maximum when the block has no kinetic energy, just before releasing it.
Then:
EPE = 1/2 · 40 N/m · (0.1 m)²
EPE = 0.2 J
The maximum potential energy of the system is 0.2 J