Explanation:
Since, it is mentioned the there occurs no change in the temperature. This also means that there will occur no change in thermal energy of the system.
Hence,
= 0. And, as
= 0 then there will be no work involved. This means that total energy added to the house will return to the outside air as heat.
Therefore,
Q = -(19000 J + 2000 J)
= -21000 J
or, |Q| = 21000 J
Thus, we can conclude that the magnitude of the energy transfer between the house and the outside air is 21000 J.
True yes TRUE
Science may also be defined as the study of surroundings
Answer:
1.648 m/s
Explanation:
1 revolution equals 2pi radians.
Calculate the angular velocity by taking 2pi x v, then divide by 60 seconds.
To convert this to m/s, simply take this answer and multiply it by 0.305m (a.k.a. the radius of the circle).
The kinetic energy of any moving object is
K.E. = (1/2) (mass) (speed)² .
To use this simple formula, the 'mass' has to be in kilograms,
and the 'speed' has to be in meters-per-second.
You can see that we have a slight problem that has to be cleaned up:
The speed in the question is given in "kilometers per hour", but we'll
need it in "meters per second". So let's convert that right now:
(600 km/hour) x (1 hour / 3600 seconds) x (1000 meters / km)
= (600 x 1 x 1000 / 3600) (km-hour-meters / hour-second-km)
= 166.67 meters/second .
Now we're ready to plug numbers into the formula for K.E.
(1/2) (mass) (speed)²
= (1/2) (80,000 kg) (166.67 m/s)²
= (40,000 kg) (27,777.8 m²/s²)
= 1,111,111,111 kg-m²/s²
= 1.1... x 10⁹ Joules (choice D)
Answer:

Explanation:
Given that,
Current, I = 2 A
Voltage across the resistor, V = 18 V
We need to find the value of resistance of the resistor. Let the resistance be R. We can find it using Ohm's law i.e.
V = IR
Where
R is the resistance of the resistor

So, the resistance of the resistor is equal to
.