Answer:
No work is performed or required in moving the positive charge from point A to point B.
Explanation:
Lets take
Q= Positive charge which move from point A to point B along
Voltage difference,ΔV =V₁ - V₂
The work done
W = Q . ΔV
Given that charge is moved from point A to point B along an equipotential surface.It means that voltage difference is zero.
ΔV = 0
So
W = Q . ΔV
W = Q x 0
W= 0 J
So work is zero.
Answer:
L = 5076.5 kg m² / s
Explanation:
The angular momentum of a particle is given by
L = r xp
L = r m v sin θ
the bold are vectors, where the angle is between the position vector and the velocity, in this case it is 90º therefore the sine is 1
as we have two bodies
L = 2 r m v
let's find the distance from the center of mass, let's place a reference frame on one of the masses
=
i
x_{cm} =
x_{cm} =
x_{cm} =
x_{cm} = 13.1 / 2 = 6.05 m
let's calculate
L = 2 6.05 74.3 5.65
L = 5076.5 kg m² / s
The frequency of the electromagnetic wave is 9.55 × 1014 Hz and it is classified as ultraviolet.
<h3>What is meant by electromagnetic waves?</h3>
Electromagnetic waves are forms of energy that are invisible and travel throughout the universe. However, some of the effects of this energy are visible. The light that we see is a component of the electromagnetic spectrum.
Electromagnetic waves, or EM waves, are produced by vibrations between an electric field and a magnetic field. In other words, electromagnetic waves are made up of oscillating magnetic and electric fields.
<h3>How do you calculate the speed of an electromagnetic wave?</h3>
The wavelength and frequency of any periodic wave are used to calculate its speed. v = λf.
In free space, the speed of any electromagnetic wave is equal to the speed of light, c = 3
108 m/s.
The frequency of the electromagnetic wave is 9.55 × 1014 Hz and it is classified as ultraviolet.
To learn more about electromagnetic wave refer to:
brainly.com/question/25847009
#SPJ4
Answer:
From ohms law,
V=IR
R=V/I =12.0/150 =0.08 ohm.