Answer:
Conduction: Some metalloids, such as silicon and germanium, can act as electrical conductors under the right conditions, thus they are called semi-conductors. Luster: Silicon for example appears lustrous, but is not malleable or ductile (it is brittle - a characteristic of some nonmetals).
Explanation:
Answer:
V = 25.3 , θf = 36.7° below the horizontal
Explanation:
Given Vo = 22m/s , θ = 23°
Vx = VoCosθ
Vy = VoSinθ – gt
t = total time of flight
Answer: I don’t know the answer to this but just do what i do look up the question I’m sure someone has answered this hope it helps❤️
Explanation:
Answer
given,
L(t) = 10 - 3.5 t
mass of particle = 2 Kg
radius of the circle = 3.1 m
a) torque
τ = 
τ = 
τ = -3.5 N.m
Particle rotates clockwise as i look down the plane. Hence, its angular velocity is downward.
L decreases the angular acceleration upward. so, net torque is upward.
b) Moment of inertia of the particle
I = m R^2
I = 2 x 3.1²
I = 19.22 kg.m²
L = I ω
ω = 
ω = 
ω = 
A = 0.52 rad/s B = -0.182 rad/s²
To solve this problem we will apply the concepts related to the electric field such as the smelting of the Force and the load (In this case the force is equivalent to the weight). Later we will apply the ratio of the total charge as a function of the multiplication of the number of electrons and their individual charge.

Here,
m = mass
g = Acceleration due to gravity
Rearranging to find the charge,

Replacing,


Since the field is acting upwards the charge on the drop should be negative to balance it in air. The equation to find the number of electrons then is

Here,
n = Number of electrons
e = Charge of each electron

Replacing,


Therefore the number of electrons that reside on the drop is 