Answer:
(E)56.0 m/s
Explanation:
Height =h=-160 m
Because the wallet moving in downward direction
Time=t=7 s
Final speed of wallet=v=0
We have to find the speed of helicopter ascending at the moment when the passenger let go of the wallet.

Where 
Substitute the values



Option (E) is true
Answer: final Velocity v = 10.2m/s
Explanation:
Final speed v(t) is given as
v(t) = u + at .......1
Where; u = the initial speed
a = acceleration
t = time taken
The total distance travelled d is given as
d = ut + 1/2(at^2)
Given
d = 5.0m
u = 2.0m
a = g = 10m/s2 (acceleration due to gravity)
Substituting into the equation above we have
5 = 2t + 5t^2
5t^2 +2t -5 = 0
Applying the quadratic formula. We have;
t = 0.82s & t = -1.22s
t cannot be negative
t = 0.82s
From equation 1 above
v = 2.0m/s + 10(0.82)m/s
v = 10.2m/s
D. rates of soil erosion are much lower during droughts that last several years
The first thing you should know for this case is the definition of distance.
d = v * t
Where,
v = speed
t = time
We have then:
d = v * t
d = 9 * 12 = 108 m
The kinetic energy is:
K = ½mv²
Where,
m: mass
v: speed
K = ½ * 1500 * (18) ² = 2.43 * 10 ^ 5 J
The work due to friction is
w = F * d
Where,
F = Force
d = distance:
w = 400 * 108 = 4.32 * 10 ^ 4
The power will be:
P = (K + work) / t
Where,
t: time
P = 2.86 * 10 ^ 5/12 = 23.9 kW
answer:
the average power developed by the engine is 23.9 kW
14 ms is required to reach the potential of 1500 V.
<u>Explanation:</u>
The current is measured as the amount of charge traveling per unit time. So the charge of electrons required for each current is determined as the product of current with time.

As two different current is passing at two different times, the net charge will be the different in current. So,

The electric voltage on the surface of cylinder can be obtained as the ratio of charge to the radius of the cylinder.

Here
, q is the charge and R is the radius. As
and R =17 cm = 0.17 m, then the voltage will be

The time is required to find to reach the voltage of 1500 V, so


So, 14 ms is required to reach the potential of 1500 V.