You add salt to increase the boiling point so when its at that point by then all the salt has dissolved because it was warm water
Answer:

Explanation:
Given:
- mass of steam,

- temperature of steam,

- temperature of resultant water,

We have,
- latent heat of vapourization of water,

- specific heat capacity of water,

<em>When we cool the steam of 100°C then firstly it loses its latent heat to convert into water of 100°C and the further cools the water.</em>
<u>Now the heat removed from steam to achieve the final state of water:</u>




a) At a position of 2.0m, the Initial energy is
all made up of the potential energy=m*g*hi<span>
and meanwhile at 1.5 all its energy is also potential energy=m*g*hf
The percentage of energy remaining is E=m*g*hi/m*g*hf x 100
and since mass and gravity are constant so it leaves us with
just E=hi/hf
which 1.5/2.0 x100= 75% so we see that we lost 25% of the
energy or 0.25 in fraction
b) Here use the equation vf^2=vi^2+2gd
<span>where g is gravity, vf is the final velocity and vi is the
initial velocity while d is the distance travelled
so in here we are looking for the vi so let us isolate that
variable
we know that at maximum height or peak, the velocity is 0 so
vf is 0
therefore,</span></span>
vi =sqrt(-2gd) <span>
vi =sqrt(-2x-9.81x1.5) </span>
<span>vi =5.4 m/s
<span>c) The energy was converted to heat due to friction with the
air and the ground.</span></span>
Answer:
f₂ = 468.67 Hz
Explanation:
A beat is a sudden increase and decrease of sound. The beats are produced through the interference of two sound waves of slightly different frequencies. Now we have the following data:
The higher frequency tone = f₁ = 470 Hz
No. of beats = n = 4 beats
Time period = t = 3 s
The lower frequency note = Frequency of Friend's Trombone = f₂ = ?
Beat Frequency = fb
So, the formula for beats per second or beat frequency is given as:
fb = n/t
fb = 4 beats/ 3 s
fb = 1.33 Hz
Another formula for beat frequency is:
fb = f₁ - f₂
f₂ = f₁ - fb
f₂ = 470 Hz - 1.33 Hz
<u>f₂ = 468.67 Hz</u>