The speed is 0.956 m / s.
<u>Explanation</u>:
The kinetic energy is equal to the product of half of an object's mass, and the square of the velocity.
K.E = 1/2
m

where K.E represents the kinetic energy,
m represents the mass,
v represents the velocity.
K.E = 1/2
m

1.10
10^42 = 1/2
3.26
10^31

= (1.10
10^42
2) / (3.26
10^31)
v = 0.956 m / s.
Answer:
A : hot and moist, maritime tropical
B: cold and dry, maritime polar
C: hot and moist , maritime tropical
D: cold and dry, continental polar
E: hot and moist , maritime tropical
F: cold and dry , maritime polar
Explanation:
Cold air is denser than warm air. The more water vapor that is in the air, the less dense the air becomes. That is why cold, dry air is much heavier than warm, humid air.
Maritime polar (mP) air masses are cool, moist, and unstable. Some maritime polar air masses originate as continental polar air masses over Asia and move westward over the Pacific, collecting warmth and moisture from the ocean.
Maritime tropical (mT) air masses are warm, moist, and usually unstable.
Answer:
Vermeer star is located at the top of large Venus
To find the accurate measurement of small cars, the teacher asks students to make all the measurements in centimeters.
Centimeters Measurements:
- A centimeter is a metric unit of measurement used for measuring the length of an object, It is written as cm
- Centimeter is one hundredth of a meter, 1 meter is 0.01 cm.
Inches measurements:
- An inch can be defined as a unit of length in the customary system of measurement. Length in inches is either represented by in or ''.
- 1 meter is equal to 39.37 inches
here, the cars are small objects.
The number of centimeters is always bigger,
because a centimeter unit is smaller than an inch unit, and it takes more of them when we are measuring.
Hence,
To find the accurate measurement of small cars, the teacher asks students to make all the measurements in centimeters.
Learn more about accurate measurement here:
<u>brainly.com/question/4119127</u>
<u />
#SPJ4
Answer:

Explanation:
Given:
volume of air in the room, 
temperature of the room, 
<u>Saturation water vapor pressure at any temperature T K is given as:</u>
<u />
<u />
putting T=298 K we have

<u>The no. of moles of water molecules that this volume of air can hold is:</u>
Using Ideal gas law,



is the maximum capacity of the given volume of air to hold the moisture.
Currently we have 80% of n, so the mass of 20% of n:

where;
M= molecular mass of water

is the mass of water that can vaporize further.