Answer:
2.5 m/s²
Explanation:
You can solve the following equation: F=ma for acceleration.
You'll be left with this:
a=F/m
And then you substitute the force and the doubled mass
a=500N/200kg
a=2.5 m/s²
might be 140mph, so that is a guess that i just made so plz let me know if im wrong or correct
Suppose earth is a soid sphere which will attract the body towards its centre.So, acc. to law of gravitation force on the body will be,
F=G*m1m2/R^2
but we now that F=ma
and here accleration(a)=accleration due to gravity(g),so
force applied by earth on will also be mg
replace above F in formula by mg and solve,
F=G*mE*m/R^2 ( here mE is mass of earth and m is mass of body)
mg=G*mEm/R^2
so,
g =G*mE/R^2
Draw a free body diagram to show which forces act in the x and y directions. The x component equation is σfx = 0. The σfx being all the forces acting in the x direction.
Answer:
The box displacement after 6 seconds is 66 meters.
Explanation:
Let suppose that velocity given in statement represents the initial velocity of the box and, likewise, the box accelerates at constant rate. Then, the displacement of the object (
), in meters, can be determined by the following expression:
(1)
Where:
- Initial velocity, in meters per second.
- Time, in seconds.
- Acceleration, in meters per square second.
If we know that
,
and
, then the box displacement after 6 seconds is:

The box displacement after 6 seconds is 66 meters.