As you proceed down the periodic table, the metallic character becomes stronger. This is because as the atomic radius increases, there is less attraction between the nucleus and the valence electrons due to the greater distance between them, making electrons simpler to shed.
Answer:
Answer is: mass of copper is 127 grams.
Balanced chemical reaction: Cu(s) + 2AgNO₃(aq) → Cu(NO₃)₂(aq) + 2Ag(s).
m(Ag) = 432 g.
n(Ag) = m(Ag) ÷ M(Ag).
n(Ag) = 432 g ÷ 108 g/mol.
n(Ag) = 4 mol.
From chemical reaction: n(Ag) : n(Cu) = 2 : 1.
n(Cu) = 4 mol ÷ 2 = 2 mol.
m(Cu) = n(Cu) · M(Cu).
m(Cu) = 2 mol · 63.5 g/mol.
m(Cu) = 127 g
Explanation:
Explanation:
Molar mass
The mass present in one mole of a specific species .
The molar mass of a compound , can easily be calculated as the sum of the all the individual atom multiplied by the number of total atoms .
(a) S₈
Molar mass of of the atoms are -
sulfur, S = 32 g/mol.
Molar mass of S₈ = 8 * 32 g/mol. = 256 g/mol.
(b) C₂H₁₂
Molar mass of of the atoms are -
Hydrogen , H = 1 g/mol
Carbon , C = 12 g/mol
Molar mass of C₂H₁₂ = ( 2 * 12 ) + (12 * 1 ) = 36 g /mol
(c) Sc₂(SO₄)₃
Molar mass of of the atoms are -
sulfur, S = 32 g/mol.
oxygen , O = 16 g/mol.
scandium , Sc = 45 g/mol.
Molar mass of Sc₂(SO₄)₃ = (2 * 45 ) + ( 3 *32 ) + ( 12 * 16 ) = 378 g /mol
(d) CH₃COCH₃ (acetone)
Molar mass of of the atoms are -
Carbon , C = 12 g/mol
oxygen , O = 16 g/mol.
Hydrogen , H = 1 g/mol
Molar mass of CH₃COCH₃ (acetone) = (3 * 12 ) + ( 1 * 16 ) + ( 6 * 1 ) = 58g/mol
(e) C₆H₁₂O₆ (glucose)
Molar mass of of the atoms are -
Carbon , C = 12 g/mol
oxygen , O = 16 g/mol.
Hydrogen , H = 1 g/mol
Molar mass of C₆H₁₂O₆ (glucose) = ( 6 * 12 ) + ( 12 * 1 ) + ( 6 * 16 ) = 108g/mol.
Answer:
3 moles
Explanation:
To solve this problem we will use the Avogadro numbers.
The number 6.022×10²³ is called Avogadro number and it is the number of atoms, ions or molecules in one mole of substance. According to this,
1.008 g of hydrogen = 1 mole = 6.022×10²³ atoms.
18 g water = 1 mole = 6.022×10²³ molecules
we are given 36 g of C-12. So,
12 g of C-12 = 1 mole
24 g of C-12 = 2 mole
36 g of C-12 = 3 mole
So 3 moles of C-12 equals to the number of particles in 36 g of C-12.
Explanation:
The starch requires a temperature higher than the room temperature (arround 60 °C) to decompose to form simple sugars. This is because the energy required to break the chemical bonds. Also, it may need the action of some specific enzymes (alpha and beta amilase) to break those bonds.