Answer: 3.75 M
Explanation:
400 mL = 0.4 L
NaOH has a molar mass of around 40 g/mol.
= 1.5 moles
Molarity =
= 3.75 M
Answer : 0.8663 Kg of chalcopyrite must be mined to obtained 300 g of pure Cu.
Solution : Given,
Mass of Cu = 300 g
Molar mass of Cu = 63.546 g/mole
Molar mass of
= 183.511 g/mole
- First we have to calculate the moles of Cu.

The moles of Cu = 4.7209 moles
From the given chemical formula,
we conclude that the each mole of compound contain one mole of Cu.
So, The moles of Cu = Moles of
= 4.4209 moles
- Now we have to calculate the mass of
.
Mass of
= Moles of
× Molar mass of
= 4.4209 moles × 183.511 g/mole = 866.337 g
Mass of
= 866.337 g = 0.8663 Kg (1 Kg = 1000 g)
Therefore, 0.8663 Kg of chalcopyrite must be mined to obtained 300 g of pure Cu.
Answer:
Red
Explanation:
Violet - shortest wavelength, around 400-420 nanometers with highest frequency. They carry the most energy.
Indigo - 420 - 440 nm
Blue - 440 - 490 nm
Green - 490 - 570 nm
Yellow - 570 - 585 nm
Orange - 585 - 620 nm
Red - longest wavelength, at around 620 - 780 nanometers with lowest frequency and least amount of energy
Therefore, <em>red </em>is the answer you're looking for.
I hope this helps and that you have a great day! :)
The hydrogen bonding in H₂O is stronger than that of HF
Explanation:
Hydrogen bonds are special dipole-dipole attraction in which electrostatic attraction is established between hydrogen atom of one molecule and the electronegative atom of a neighboring molecule.
- The strength of hydrogen bonds depends on the how electronegative an atom is.
- Electronegativity refers to the tendency of an atom to gain electrons.
- The higher the value, the higher the tendency.
- This why oxygen with a higher electronegativity will form a stronger hydrogen bond with hydrogen compared to fluorine.
Learn more:
hydrogen bond brainly.com/question/12408823
#learnwithBrainly