Answer:
Potential Energy = x = m g h
Kinetic energy = 1/2 m v^2
Assuming the mass fall from rest
1/2 m v^2 = m g h
v^2 = 2 g h
So the speed attained is independent of the mass
Also, x / v does not have the units of mass
So the solution is none of the above.
The distance a dropped object falls, with gravity and no air resistance:
Distance = (1/2) (acceleration) (falling time)²
Without air resistance, the horizontal motion has no effect on the fall.
Acceleration of Earth gravity = 9.8 m/s²
Distance = (1/2) (acceleration) (falling time)²
Distance = (1/2) (9.81 m/s²) (3.0 s)²
Distance = (0.5) x (9.81 m/s²) x (9.0 s²)
Distance = (0.5 x 9.81 x 9.0) (m-s² / s²)
Distance = 44.15 meters
We don't care how fast the bird was flying horizontally. It doesn't change anything. (It DOES determine how far ahead of the drop point the clam hits the ground. Most problems like this ask for that distance. This one didn't.)
Answer:
Distance = 10 kilometers.
Explanation:
Given the following data;
Speed = 5km/h
Time = 2 hours
To find the distance traveled;
Distance = speed * time
Distance = 5 * 2
Distance = 10 kilometers
Therefore, the distance travelled by the car is 10 kilometers.