Answer:
799.54 ft
Explanation:
Linear thermal expansion is:
ΔL = α L₀ ΔT
where ΔL is the change in length,
α is the linear thermal expansion coefficient,
L₀ is the original length,
and ΔT is the change in temperature.
Given:
α = 1.2×10⁻⁵ / °C
L₀ = 800 ft
ΔT = -17°C − 31°C = -48°C
Find: ΔL
ΔL = (1.2×10⁻⁵ / °C) (800 ft) (-48°C)
ΔL = -0.4608
Rounded to two significant figures, the change in length is -0.46 ft.
Therefore, the final length is approximately 800 ft − 0.46 ft = 799.54 ft.
Answer:
The maximum power density in the reactor is 37.562 KW/L.
Explanation:
Given that,
Height = 10 ft = 3.048 m
Diameter = 10 ft = 3.048 m
Flux = 1.5
Power = 835 MW
We need to calculate the volume of cylinder
Using formula of volume

Put the value into the formula


We need to calculate the maximum power density in the reactor
Using formula of power density

Where, P = power density
E = energy
V = volume
Put the value into the formula


Hence, The maximum power density in the reactor is 37.562 KW/L.
In a parallel circuit, the total resistance calculated from the individual resistances is computed from the formula: 1/Rt = 1/R1 + 1/R2. substituting R1 and R2, then
1/Rt = 1/7 + 1/49
1/Rt = 1/6.125 = 1/ 49/8
Rt = 49/8 <span>Ω
The total resistance hence is </span>49/8 Ω
C. It is answered by observation and evidence.
Good scientific explanations are defined, measurable and controllable. They can be answered by an experiment.