Answer:0.45L
Explanation:
molarity=0.15M
Mass=5g
No of moles=mass ➗ molecular mass
Molecular mass of KCL=39.0983x1+35.453x1
Molecular mass of KCL=74.5513
No of moles=5 ➗ 74.5513
No of moles=0.067
Volume in liters=No of moles ➗ molarity
Volume in liters=0.067 ➗ 0.15
Volume in liters=0.45L
Answer: The reaction of 1 mol of C to form carbon monoxide in the reaction 2 C(s) + O2(g) ( 2 CO(g) releases 113 kJ of heat. How much heat will be released by the combustion of 100 g of C according the the above information? According to the balanced chemical equation;
Explanation:
Answer:
A
Explanation:
With chemical reactions, there are various factors that affect the rate of the reaction. One of these is temperature.
When you raise the temperature, the reaction will move faster. Why? Temperature is directly correlated with the kinetic energy (basically, the energy that makes the particles move). Higher temperatures mean higher kinetic energies. Particles with higher kinetic energies move faster, which makes them more likely to collide. When collisions occur more frequently, the reaction follows through more quickly.
Thus, when Julissa warms the solutions, she will see that bubbling and white solid formation (the products of the reaction) occus faster. So, the answer is A.
Hope this helps!
Answer:
0.1832 moles of ethyl acetate (
)
Explanation:
1. Find the balanced chemical equation:
In the production of ethyl acetate, the acetic acid
reacts with ethanol to produce ethyl acetate
and water, that is:

2. Find the theoretical maximum moles of ethyl acetate
:
As the problem says that the acetic acid
is the limiting reagent, use stoichiometry to find the moles of ethyl acetate produced:
